
Scalability in Adaptive Multi-Metric Overlays �

Adolfo Rodriguez and Dejan Kostić
Dept. of Computer Science

Duke University
Box 90129

Durham, NC 27708
razor,dkostic@cs.duke.edu

Amin Vahdat �

Dept. of Computer Science and Engineering
University of California, San Diego
9500 Gilman Drive, Dept. 0114

La Jolla, CA 92093
vahdat@cs.ucsd.edu

Abstract

Increasing application requirements have placed heavy
emphasis on building overlay networks to efficiently de-
liver data to multiple receivers. A key performance chal-
lenge is simultaneously achieving adaptivity to changing
network conditions and scalability to large numbers of
users. In addition, most current algorithms focus on a sin-
gle performance metric, such as delay or bandwidth, par-
ticular to individual application requirements. In this pa-
per, we introduce a two-fold approach for creating robust,
high-performance overlays called Adaptive Multi-Metric
Overlays (AMMO). First, AMMO uses an adaptive, highly-
parallel, and metric-independent protocol, TreeMaint, to
build and maintain overlay trees. Second, AMMO provides
a mechanism for comparing overlay edges along specified
application performance goals to guide TreeMaint transfor-
mations. We have used AMMO to implement and evaluate
a single-metric (bandwidth-optimized) tree similar to Over-
cast and a two-metric (delay-constrained, cost-optimized)
overlay.

1. Introduction

The growing popularity of distributed applications has
led to demands for increasing functionality from the un-
derlying network. One example is multicast, where data is
simultaneously disseminated to multiple receivers. While
some efforts retrofit such functionality into the network
fabric (e.g. IP multicast), these have been largely limited
by administrative, scalability, and security problems. Over-
lay networks, where nodes self-organize to create a logi-
cal network capable of efficiently disseminating data to re-

� Supported in part by the National Science Foundation (EIA-99772879,
ITR-0082912), Hewlett Packard, IBM, Intel, and Microsoft.

� Supported by an NSF CAREER award (CCR-9984328).

ceivers [1, 5, 6, 7, 11], are an increasingly viable option
for delivering improved functionality and semantics. Here,
a spanning tree is formed by selecting � � � overlay edges
of an �-node overlay from the �� possibilities based on per-
ceived performance characteristics (e.g., bandwidth and de-
lay). Each participant chooses a parent that allows it to sat-
isfy performance criteria by comparing potential overlay
edges. The sequential version of this problem when deal-
ing with multiple metrics is typically NP-hard [20, 22] even
with global knowledge under non-realistic, static network
conditions. As a result, many efforts consider only a single
performance metric. Further, researchers have been both-
ered by cumbersome overlay maintenance algorithms that
tightly couple performance requirements with the mecha-
nisms employed to improve the overlay. Our work focuses
on the observation that performance specification and over-
lay maintenance are largely independent and should be de-
coupled.

Overlay edge weights are typically inferred through the
use of coordinated probes that measure, for example, round-
trip time or available bandwidth. To adapt to dynamic net-
work conditions, nodes continuously probe other partici-
pants, constantly searching to improve the overlay. Given
that nodes join and leave the overlay at high rates, we re-
quire fresh membership information to be readily avail-
able. To ensure scalability, however, no node can probe
more than ���� �� participants, nor can we require global
groupmembership or global locking; no node can keep state
about all other nodes in the overlay. An overlay’s mainte-
nance protocol cannot require ���� communication to en-
sure correctness. Naturally, requiring high probing and fresh
group membership for adaptivity and low probing with lim-
ited group membership for scalability effects a trade-off
in the quality of the overlay. Hence, our goal is to create
an algorithm that delivers sufficient flexibility in adjusting
to changing network conditions while not requiring large
amounts of state or communication that would limit scala-
bility.

In this paper, we present the design of a family of dis-
tributed algorithms, AMMO (Adaptive Multi-Metric Over-
lays), aimed at bridging the gap between scalability and
adaptivity in overlays. A key insight behind AMMO is the
distributed construction of ordered random subsets of global
overlay participants [10]. AMMO nodes use these subsets
(restricted to ���� �� size) to probe overlay peers for better
connectivity. We develop an overlay maintenance protocol
called TreeMaint to enable our overlays to quickly converge
to a tree that meets a set of application-specific performance
requirementswithout introducing loops into the overlay and
without distributed locking. Each AMMO application spec-
ifies prioritized root-to-leaf metric constraints, �� � � � ��.
For example, a video application could specify a maximum
root-to-leaf delay of 200 ms. In this respect, AMMO at-
tempts to approximate a shortest path tree (SPT) to within
some constraint along the desired metric. Once a constraint
is met, AMMO proceeds with lower priority optimization
targets.
In addition, an application defines a performance metric

function, � , of a directed overlay edge �:

� ��� �

��

���

������� (1)

where ����� represents �’s weight along some metric 	.
For example, for a delay metric,����� could represent the
end-to-end delay from �’s source to �’s destination. �� is
a normalizing scalar that enables applications to favor cer-
tain performance metrics over others, describing their rel-
ative priority. In this regard, AMMO approximates a min-
imum spanning tree (MST) where each node attempts to
greedily decrease its distance to its parent as measured by
themetric function.Our goal is to minimize the sum of� ���
for all overlay edges, while falling within application met-
ric constraints. By specifying performance via constraints
and a metric function, AMMO can provide the necessary
maintenance for overlays such as Overcast [7] (with metric
function consisting of bandwidth) and SARO [10] (with de-
lay constraint and bandwidth metric function). As such, one
can view AMMO as a superset of these algorithms, provid-
ing scalability and adaptivity to tree-based protocols.
The remainder of this paper is organized as follows. Sec-

tion 2 places our work in the context of related efforts.
Section 3 presents TreeMaint, a fully decentralized, metric-
independent algorithm for overlay transformations and pro-
vides a proof of its correctness. Next, Section 4 describes
the metric function and shows how systems such as Over-
cast and SARO can use it to describe the performance
metrics they aim to optimize. We present the details of a
fully functional distributed implementation of AMMO in
Section 5. We evaluate our AMMO implementation using
1000-node overlays running across an accurately emulated

wide-area network [21] and show that AMMO quickly con-
verges to nearly-optimal trees for a variety of network con-
ditions and performance targets. We conclude in Section 6.

2. Related Work

AMMO is closely related to RanSub [10], which pro-
vides a mechanism for uniform 1 random subset delivery
and has been used to build scalable network services such
as SARO [10] and Bullet [11]. RanSub periodically collects
random subsets from member nodes and distributes them
to each participant. To show the utility of RanSub, SARO
used it to construct a delay-constrained, bandwidth opti-
mized tree. In contrast, this work extends overlay construc-
tion to an arbitrary number of performance metrics. We de-
scribe TreeMaint, our technique for building loop-free trees
using RanSub in full detail. We also provide a proof of
TreeMaint’s correctness. Finally, we use AMMO to imple-
ment and evaluate Overcast and a delay-constrained, cost-
optimized tree.
The problem we address is related to multicast QoS rout-

ing, where an algorithm may recruit intermediate points
(routers). In our case, intermediate routers cannot partici-
pate in the overlay. This reduction in freedom only aids the
single-metric optimization problem (a polynomial sequen-
tial algorithm exists for MSTs). Wang and Crowcroft [22]
have shown that the problem of finding a network path sub-
ject to multiple constraints is generally NP-hard. The ex-
ception is when bandwidth is one of the metrics, since the
bandwidth among a path is the minimum of the bandwidths
of constituent links. Most recent approximation efforts in
bi-criteria network optimization problems offer sequential
algorithms [3, 12] that require full topology information.
Without global knowledge, these algorithms cannot be ap-
plied to large-scale overlay networks. Kompella et al. [8]
have extended their work on delay-constrained minimum
cost multicast trees [9] into the distributed setting. How-
ever, they assume the presence of a distance-vector algo-
rithm that provides each node with delay to all other nodes.
This approach does not scale or is not adaptive if routing up-
dates are delayed to make it scalable.
Narada [5, 6] builds a mesh interconnecting all nodes on

which it runs a standard multicast routing protocol. Narada
only optimizes for two metrics, one of which is bandwidth,
making the problem not NP-hard. Narada also does not al-
low metric constraints as done by AMMO. Finally, Narada
nodes maintain global knowledge about all group partici-
pants. While feasible for their target of video conferenc-
ing among a few dozen nodes, such a requirement does not
scale to the systems we consider.

1 While RanSub’s uniformity is emperically validated in [10], a small
modification leads to a simple uniformity proof as shown in [16].

In Overcast [7], all nodes join at the root and migrate
down the tree while not sacrificing bandwidth. Overcast
periodically allows nodes to move up and down the tree
to react to changing network conditions. To avoid loops,
Overcast requires knowledge of a node’s ancestors, limit-
ing its ability to scale since its tree height tends to grow un-
bounded. An alternate approach is to require the use of dis-
tributed locks to synchronize transformations. While such
an approach resolves the scalability problems of Overcast’s
maintenance algorithm, it comes at the price of decreased
adaptivity. A third approach is to use AMMO for Overcast
transformations. While Overcast uses a restrictive policy
for choosing potential parents (grandparents and siblings),
AMMO nodes can choose from a wider range of potential
parents. For illustrative purposes, however, we have modi-
fied our RanSub implementation to only deliver siblings and
grandparents in subsets and as such, have successfully im-
plemented Overcast within the AMMO framework.
Finally, a number of recent efforts [14, 19, 24] propose

building application-layer multicast on top of scalable peer-
to-peer lookup infrastructures [4, 15, 18, 23]. While demon-
strating that it is possible to probabilistically achieve good
delay relative to native IP multicast, they are unable to pro-
vide performance bounds because of the probabilistic na-
ture of the underlying peer-to-peer system. Further, they do
not consider multi-metric network optimizations.

3. Overlay Transformations with TreeMaint

In this section, we describe TreeMaint, a distributed al-
gorithm for building and maintaining scalable and adaptive
overlays. Each TreeMaint node keeps state regarding ad-
dresses of its parent and children, sequence number of the
current synchronization epoch, total number of overlay par-
ticipants, and number of descendants in the subtree it roots.
An algorithm that uses TreeMaint, such as AMMO (de-
scribed in Section 4), maintains additional state to deter-
mine which overlay transformations should be made. Such
information includes performance metrics, such as mea-
sures of delay or bandwidth, though their specification is
orthogonal to TreeMaint operation.

3.1. RanSub

Given global knowledge and plentiful bandwidth, the op-
eration of overlay nodes would be relatively straightfor-
ward. Each node would simply probe the paths between it
and all remote participants to find the parent that best meets
application goals. However, for scalability, we cannot im-
pose the requirement that any node has such global knowl-
edge. Hence, we rely on the probabilistic distribution of uni-
formly random subsets (of configurable size) to each node
once per time epoch, using the RanSub [10] utility. The con-

tents of these random subsets change from one epoch to the
next. TreeMaint nodes use these size-limited random sub-
sets to probe remote participants for better connectivity. In
this way, we ensure that no more than ��� �� �� probes are
performed during any epoch. For example, we find that a
1000-node AMMO tree using a small epoch imposes an ac-
ceptable per-node probing overhead of 2 KBps.
RanSub operation requires the use of an underlying over-

lay tree, which, in our case, is provided by TreeMaint it-
self. A RanSub epoch (identified by increasing sequence
numbers) consists of two sequenced phases. A collect phase
sweeps up the tree, where each node successively constructs
a random collect set and sends it to its parent. A distribute
phase sweeps down the tree, where a node constructs dis-
tribute sets for its children using previously received col-
lect sets and its own distribute set received from its parent.
When a leaf node receives a Distribute message with a ran-
dom subset, it initiates a collect phase by sending to its par-
ent a Collect message containing only itself. Parents hav-
ing sent Distribute messages to children will receive Collect
messages from them before propagating a Collect upward.
A parent uses the contents of received Collect messages to
construct an ordered random subset of nodes uniformly rep-
resentative of all participants in the subtree it roots.
The root uses the contents of received Collect messages

to send a Distribute message to each of its children. For
this epoch, the root establishes a random ordering among
its children. It includes in a Distribute message to a child
only subsets received from children preceding the child in
the current ordering. A node receiving a Distribute message
in turn uses previously received collect sets and its tran-
sient ordering among its children to construct Distribute
messages to propagate down the tree. The ordered flavor
of RanSub ensures that a node receives subsets consisting
only of nodes preceding it in the current transient total or-
dering (one ordering per epoch). This ultimately ensures
TreeMaint’s ability to make simultaneous transformations
without introducing loops.

3.2. TreeMaint Operation

TreeMaint nodes attempt to initiate a tree transformation
when directed to do so. While other algorithms that use
TreeMaint are free to choose the appropriate conditions for
transformations, the criteria for initiating AMMO transfor-
mations is further described in Section 4. When a node �
wishes to move under
, it sends a transformation request to

 along with the current epoch sequence number (received
in the RanSub Distribute message). If this sequence number
matches
’s own current sequence number, the transforma-
tion is accepted and is acknowledged by
 to � via a trans-
formation responsemessage. The use of a sequence number
and a total ordering among members of the random subset

disallows any operation that would create a loop in the tree;
a proof is provided in Section 3.3.

There are a number of potential interactions between the
timing of epochs and TreeMaint transformations. The se-
quence number of the current epoch allows nodes to iden-
tify which total ordering was used when initiating a trans-
formation. A node receiving a Distribute message with se-
quence 	�� receives a distribute set with sequence number 	
and is said to be operating under ordering ��. If a potential
parent receives a transformation request for a node operat-
ing under a different sequence number, it rejects the request.
There may, however, be cases in which a node and the sub-
tree it roots are not included in this total ordering because
the node makes a transformation between distribute and
collect phases or during failure recovery scenarios. Addi-
tionally, TreeMaint may suppress subset inclusion in cases
where a subtree might be reported in more than one loca-
tion in the total ordering.

Consider a scenario where a node � moves from � to
� using ordering �� (having received a Distribute message
with sequence ����). Three interesting cases arise. First,
node � could have moved after transmitting a Collect mes-
sage with sequence 	�� to� . In this case,�’s subtree is re-
ported to � for ordering ����. Upon making the move un-
der � , � will not send � a Collect message with sequence
	 � �, nor will � expect such a message from �. Alter-
natively, node � could have moved before it had a chance
to transmit a Collect message with sequence 	 � � to � .
Node � will have an outstanding distribute sequence in its
subtree. Upon accepting �, � will not expect a collect se-
quence 	 from �, but will receive it anyway because the
distribute is outstanding in �’s subtree. � will ignore this
message.� , which was expecting to receive a Collect mes-
sage with sequence 	� � from �, will resolve this expecta-
tion at the time � is removed from� . In this case, the sub-
tree rooted at � will be excluded from the total ordering
of this sequence. Finally, a failure recovery scenario could
lead to neither � nor � receiving a Collect message with
sequence 	� � in which case � and the subtree it roots are
excluded from the total ordering����.

3.3. TreeMaint Correctness

In this section, we prove that TreeMaint maintains a con-
nected tree without loops under concurrent transformations.
Because of space limitations, we omit some details of the
proof. We use the following notation: if precedes � in
the total ordering, then we write � �. Likewise, if
does not precede �, we write �� �.

Lemma 1 If� is in a subtree that moves under using��,
then � �� in ����.

Proof: Let � be the ancestor of � that moves under and
� be �’s old parent. Then for this move, and � are op-
erating under �� and have not yet received ����. There are
three cases to consider. If � received collect 	 � � from �

before the move, any move that could push� in front of
will result in the squashing of collect 	 � � with � poten-
tially in it. It follows that� �� in����. If received col-
lect 	� � from �, then clearly, � �� in 	� �. Finally, if
no node processed a valid collect 	 � � from �. then � is
not present at all in ���� and therefore� �� in ����.

Lemma 2 If node� is operating with ��, its descendant
is operating with ���� or ��. Likewise, if is operating
under��, its ancestor � is operating with �� or ����.

Lemma 3 If � is a descendant of , then � �� in �’s
current operating ordering ��.

Proof: If � sent a Collect 	 with �� after its was a descen-
dant of , then � �� . If � sent Collect 	 via some other
node, it must have been operating under ����. If it moved
while operating under����, then � �� in ��. If it moved
while operating under ��, then � � in �� and hence
� �� in 	.

Lemma 4 If a Distribute 	� � is in flight from ancestor �
to descendant, either receives this Distribute or moves
away from under�.

Theorem 1 No node can be a child of its own descendant.

Proof by contradiction: Assume that a node R has made a
move using �� and has become a child of one of its descen-
dants, �. This means that � � � in �� and some move
occurred that made � a descendant of �. Namely, some an-
cestor � of � (perhaps � itself) became the child of some
descendant
 of � (perhaps � itself). If � was in a sub-
tree that moved under � using �� , then � �� � in ����.
Hence, � �� 	� �, because � � � in ��. (Lemma 1)
Additionally, because at the time of the move� was operat-
ing under ���� or ��,
 and � were operating under ����

or �� (not 	� �). (Lemma 2)
If � was operating under ����, then S was operating under
����. The only way that could happen is if a distribute de-
livering ordering ���� was in flight from � to
. Because

 must either receive this distribute or move away from be-
ing a descendant of�, it must have received it. Hence,
 re-
ceived at least ���� and � �� 	� �. (Lemma 4)
Since � �� 	 � � and � �� 	 � �, then � � 	. Nodes
 and
� operated under ��. Hence
 � � in ��. Now since � is
a descendant of � and is operating under��, �� must show
� � �. (Lemma 3)
Likewise, since
 is a descendant of � and is operating un-
der ��, �� must show � �
. Thus, � �
,
 � � ,
� � � in ��, implying that � � � in ��, which contra-
dicts our initial assumption that � � � in ��.

3.4. Dealing With Constrained Degree

To limit the amount of per-node resources, TreeMaint al-
lows a degree constraint to be placed on individual nodes.
The algorithm disallows transformations that would violate
this degree constraint. In doing so, the greedy nature of the
algorithm may lead to sub-optimal overlays. Consider the
following situation. A node � with a particular degree con-
straint has a full complement of children. However, a node
 somewhere else in the overlay can only achieve its met-
ric constraint by becoming a child of �. Finally, one of �’s
children, �, is best served by � but it would still be able to
achieve its metric constraint as a child of some fourth node
�. As described thus far, TreeMaint would become stuck
in a “local minimum” in this situation. We address this sit-
uation by adding wean operations in which a child is pur-
posely asked to leave a specific parent in favor of a less at-
tractive for the greater good of the overlay. A child that is
being weaned operates normally in subsequent epochs with
the exception that it will attempt a transformation even if
the target is not strictly better than its current parent. Note
that a wean may or may not succeed (an appropriate alter-
nate parent may not exist). The wean operation expires after
a configurable number of epochs.

4. Multi-Metric Transformations

AMMO makes use of the overlay maintenance mecha-
nism provided by TreeMaint to build scalable and adaptive
overlays that are optimized for a plurality of performance
characteristics, such as bandwidth, delay, cost, and packet
loss rate. To this end, AMMO nodes keep state regarding
their current performance measures in the overlay. In gen-
eral, we assume that potential overlay edges have multiple
independent weights representing these dynamically chang-
ing metrics.
An AMMO node, �, maintains ���� which is its cur-

rent estimate for the cumulative metric on the root-to-node
path, for each metric 	. For example, for a delay metric,
this would be the sum of delays at each overlay hop from
the root to �. In addition, the node maintains ���

which is
the estimate of the maximum node-to-leaf cumulative met-
ric for the subtree rooted at this node. AMMO augments
RanSub Collect and Distribute messages to contain fields
necessary to maintain this node state. Table 1 shows a sum-
mary of the additionalfields used to construct AMMO trees.

4.1. Types of Metrics

There are many types of performance metrics that an ap-
plication may consider. Our approach identifies two mea-
surement properties. First, we assume that for each metric,
a measure � is “better” than a measure � if � � �. Sec-

ond, each measure has an associated �� operator that al-
lows measures of two edges to be combined into one cu-
mulative measure. We now briefly outline the metrics that
AMMO currently supports:

1. Delay captures both queuing and propagation delay in-
curred from sending a packet across a link. It can be es-
timated through “pings”. The �� is defined as � since
delays through an overlay are the sum individual over-
lay hop delays.

2. The bandwidth complement is the difference between
some pre-defined bandwidth expectation and band-
width through an overlay edge. We define the � �� �

operation as ������ �� since the bandwidth achiev-
able through two contiguous overlay edges is the min-
imum of the bandwidth achievable through each con-
stituent overlay edge (and hence the maximum of the
bandwidth complements).

3. Packet loss rate refers to the fraction of packets lost
when sending data over an overlay edge. Packet loss
rate can be determined via probing. Its � �� � opera-
tion is defined as � � �� � ���� � �� since the prob-
ability of a packet loss across two contiguous edges is
the complement of the product of the delivery proba-
bilities of each edge.

4. Cost is a somewhat more ambiguous metric that may
be assigned arbitrarily, for instance, representing the
performance of a link, the actual price paid to an ISP
or the relative desire to use one link over another. In
our implementation, the cost of an overlay edge equals
the sum of the costs of the underlying IP edges. Note
that, in general, cost need not be tied to the underly-
ing topology and could be specified via administrative
policies. Its �� operator is defined as �.

4.2. Application Goals

An application using AMMO specifies its performance
criteria using a metric function, performance constraints,
and constraint priorities. The metric function � �� assigns
a metric weight to an edge as described in Equation 1. In
this equation,����� refers to the measure of edge � along
metric 	 and �� encodes an application’s relative weight for
each metric. This metric function is used to guide overlay
transformations once the overlay has fallen within applica-
tion constraints.
Root-to-leaf metric constraints indicate to AMMO the

minimal requirements of the overlay. Exceeding these con-
straints results in an unusable overlay. These constraints are
prioritized so that AMMO transforms the overlay until it
meets each constraint, starting with the most important con-
straint. The constraints are denoted �� � � � �� such that if
� � �, �� has a higher priority than ��.

Collect Distribute
���� � � � ���� For each metric, estimate of worst de-

scendant’s node-to-leaf measure
���� � � � ���� For each metric, estimate of root’s

measure to this node via overlay
���� � � � ���� For each metric, estimate of gain from

moving to best alternate parent
����	�� � � � ����	�� For each metric, root’s current node-

to-leaf estimate of worst node

Table 1. Fields augmented to RanSub’s Collect and Distribute messages by a sending node, �.

Root�

C�

Y�

C
� j�X�

e'�e�

M�j�(e')�

U
� C
,j�
 =

 U
� X
,j�
 +

' M
� j�(
e)

�

U
� X
,j� U�Y,j�

L
� Y

,j�

L
� C

,i�

Figure 1. Sample network illustrating a possi-
ble transformation.

4.3. Overlay Transformations

Figure 1 describes the necessary state maintained by
nodes performing transformations. There are three types of
AMMO overlay transformations, CONSTRAINED, TREE-
CONSTRAINED, and UNCONSTRAINED, each of which
have two different flavors, RESTRICTED and UNRE-
STRICTED. In this example, a node � is considering a
transformation from its current parent � to a new par-
ent � . The application has specified its performance metric
constraints, summarized by the notation �
 (for each met-
ric �). Node � maintains an estimate of the greatest (worst)
node�-to-leaf cumulativemetric measure which it stores in
���
 . It also calculates an estimate of the cumulative met-
ric measure from the root to it and stores that in ���
 .
These values are used when determining whether to ro-
tate underneath a new parent.
The CONSTRAINED (CON) transformation is effected

when a node �’s ���
 is greater than a constraint �
 for
any metric �. In this case, � has violated an application-
specified constraint. It attempts to transform the overlay in

order to satisfy the constraint. � determines which node (if
any) can help reduce its measure from root for the violated
performance metric. Hence, node � would make the move
under � if ���
 �� �
��

�� � ���
 . If multiple metrics are
violated,� respects the relative priority specified by the ap-
plication.
The UNCONSTRAINED (UNC) transformation is de-

signed to reduce the overall tree metric function. This trans-
formation searches for nodes that have a more attractive
overlay edge �� than the edge to its current parent � in terms
of the metric function. That is, � ���� � � ���. In addition,
for each metric j, we ensure that ���
 ���
��

�� �� ���
 �

�
 , meaning that making the transformation will not vio-
late any metric’s constraint.
Recall that AMMO delivers current estimates of the root

����	�
 values via the Distribute message. This allows nodes
to determine which constraints are in violation by any node
in the tree. If a metric constraint is violated elsewhere,� at-
tempts to make a TREE-CONSTRAINED (TC) transforma-
tion to reduce the metric in hopes that the violated node can
comewithin bounds. The nodes are still free to performUN-
CONSTRAINED transformations since they, themselves,
are within bounds. However, any such transformation must
not increase the violated constraint metrics. We offer the de-
tails on effects of simultaneous transformations, along with
the description of RESTRICTED and UNRESTRICTED
transformations, in section 4.4.
In addition to these transformations, AMMO can direct

TreeMaint to perform a wean of a child when it has reached
its maximum degree. A parent determines the wean target
based on the child estimated to lose the least in terms of the
best alternate parent. This information is passed by a node
� to its parent � in the ��� � � � ��� array in the Collect
message as shown in Table 1.

4.4. The Effect of Simultaneous Transformations

Simultaneous transformations may temporarily violate
one or more of the overlay’s constraints. Consider the fol-
lowing example where an overlay has constrained delay and
the metric function considers only cost. A node, �, per-
forms a transformation to a new parent that improves cost
but somewhat increases delay. This increased delay does

not violate the metric constraints of any of �’s descen-
dants. However, a node may simultaneously (in the same
epoch) perform a transformation to node �, node �’s de-
scendant, increasing the delay to and ’s descendants,
but still within bounds based on�’s currently stale ��������
value.
The cumulative effect of simultaneous delay increases to

� and to may result in delay constraint violations for
 or some subset of its descendants. While such tempo-
rary violations are acceptable given that we do not pro-
vide hard performance guarantees, we mitigate this effect
by probabilistically limiting the number of simultaneous
UNRESTRICTED transformations in any one epoch. Trans-
formations that are RESTRICTED have the additional limi-
tation that any move to a new parent � must not increase
� ’s ���
 value for any metric �. Note that simultaneous
RESTRICTED transformations will not violate any node
�’s ���
 values. In AMMO, each node performs UNRE-
STRICTED transformations with probability �

���
during

each epoch. The rationale is that ��� is roughly the height
of the tree and we wish to avoid multiple transformations
within the same path.

5. Evaluating AMMO

We have implemented and evaluated AMMO in the ns
network simulator [13] and within MACEDON [17] to cre-
ate TCP/IP code that functions in the ModelNet [21] em-
ulation environment. While we only show ModelNet re-
sults, our ns results are qualitatively similar. For most exper-
iments, we use 20,000-node INET generated topologies [2].
We randomly assign 1,000 clients to one-degree stub nodes
in the topology and randomly choose a node to root the
AMMO tree. We typically set link bandwidths to 100-155
Mbps for transit-transit links, 10-100 Mbps for transit-stub
links and 1-10 Mbps for stub-stub and client-stub links. We
set delays among nodes based on the relative placement in
the plane as determined by INET. To illustrate the effective-
ness of AMMO, we have run experiments with constraints
and metric functions corresponding to Overcast (bandwidth
metric function) and a delay-constrained, cost-optimized
flavor which we refer to as������ In the case of Over-
cast, there is nometric constraint and the metric function de-
pends only on the bandwidth metric:

� ��� ���������	���� (2)

To estimate bandwidth, Overcast uses a download times of
140 Kb of data. For ������ , delay is constrained and
� is given by:

� ��� � ����	��� (3)

We set the cost of physical links to be uniformly distributed
between 20-40 for transit-transit links, 10-20 for transit-stub

links, and 1-5 for stub-stub and client-stub links. We then
set the cost of an overlay edge to be the sum of the costs
of its constituents physical links in the underlying IP net-
work. Note that a contribution of our work is not an accurate
model for assigning link cost. Rather, we wish to demon-
strate that AMMO can optimize for overlay cost indepen-
dent of the technique used to assign it.

5.1. Overlay Convergence Performance Results

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

C
os

t v
s.

 M
S

T

ac
hi

ev
ed

 d
el

ay

time

delay (348 ms delay bound)
delay (261 ms delay bound)

cost (261 ms delay bound)
cost (348 ms delay bound)

Figure 2. ������ cost and delay conver-
gence as a function of time for two different
delay constraints.

Figure 2 shows the maximum root-to-leaf delay and cu-
mulative cost for two������ overlays for a representa-
tive topology Nodes join the overlay during the first 20 sec-
onds. In effect, at the beginning of the experiment we pes-
simistically create a random overlay. We show cost of the
overlay relative to the minimum cost spanning tree (calcu-
lated offline) on the left-hand y-axis as a function of time
progressing on the x-axis. A “Cost vs. MST” of 1.0 corre-
sponds to the degree-unbounded optimal. We use a probe
set of 15 and a maximum degree of 40. For this example,
a shortest path tree (constructed from the overlay partici-
pants) achieves a 174 ms worst-case root-to-leaf delay. We
observe the behavior of the system for two different delay
constraints, 261 ms (corresponding to ��	
�) and 348 ms
(��

�). The right-hand y-axis shows the achieved delay
as a function of time. AMMO quickly converges to the spec-
ified delay constraint in both cases, despite starting with
random overlay connectivity. Once the delay constraint is
satisfied, cost steadily decreases to within 20% of the MST
optimum.

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250

B
an

dw
id

th
 (

K
bp

s)

Time (s)

Bandwidth received

Figure 3. Overcast achieved bandwidth over
time.

Next, we use our Overcast implementation to stream data
over the resulting tree. We decreased topology bandwidth to
better illustrate Overcast’s convergence; we use 2000-4000
Kbps for transit-transit, 1000-2000 Kbps for transit-stub,
500-1000 Kbps for stub-stub, and 300-600 Kbps for client-
stub links. Our AMMO Overcast implementation uses a
modified version of RanSub to only deliver random sub-
sets containing only siblings and grandparents (as employed
by the original Overcast algorithm). We plot the average
achieved bandwidth over time in figure 3. Bandwidth in-
creases as nodes continuously move to find more band-
width. Eventually, the average stabilizes at 180 Kbps.

5.2. Adaptivity

An important aspect of AMMO is its ability to dynami-
cally react to changing network conditions. Here, we sub-
ject a steady-state ������ overlay to widespread and
sustained change in network delay, where 13% of network
links are increase their delays by 0 to 25% of the original
link delay. This occurs every 25 seconds starting at time 600
for 200 seconds. The idea behind this experiment is to eval-
uate the overlay as the network degrades under conditions
much worse than those typically found on the Internet.
Figure 4 shows the overlay quickly converging to the de-

lay constraint (382 ms). Cost steadily decreases to within
30% of the optimal MST value when the network pertur-
bation begins. At that point, AMMO’s target constraints
are violated and metric function operations subside in an
attempt to restore the tree to within the delay constraint.
AMMO takes an additional 100 seconds to meet the con-
straint after the network degradation subsides. Note, how-

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

C
os

t v
s.

 M
S

T

ac
hi

ev
ed

 d
el

ay

time

delay
delay constraint

cost

Figure 4. Adaptivity of AMMO overlays in re-
sponse to pronounced increase in network
delay.

ever, that the increased link delays are maintained at their
elevated levels. Once it has again met the delay constraint,
AMMO recovers the cost performance in 300 seconds.

0

50

100

150

200

250

300

350

400

0 500 1000 1500 2000

N
um

be
r

of
 T

ra
ns

fo
rm

at
io

ns

Time (s)

AMMO Overcast
Distributed Lock Overcast

Figure 5. Number of transformations effected
over time for AMMO-based Overcast and dis-
tributed lock-based Overcast.

To further illustrate AMMO’s adaptivity, we compare
AMMO Overcast to a similar implementation created with
the use of small-scale distributed locks. In this implementa-
tion, a node simply locks its parent and siblings prior to re-
questing probe downloads. Once the probes are complete,
the node decides whether a move should be made, per-
forms the transformation, and releases any acquired locks

(by sending locked nodes an unlock message). While the
use of distributed locking can lead to cumbersome failure
detection, we also note that it decreases adaptivity even
without such failures. Figure 5 shows the number of trans-
formations performed over time for both Overcast imple-
mentations. AMMO Overcast outperforms the lock-based
Overcast by as much as 50%, hence enabling greater con-
currency and improved adaptivity.

5.3. Dealing With Multiple Metrics

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

C
os

t/M
S

T
 C

os
t

A
ch

ie
ve

d
D

el
ay

/S
P

T
 D

el
ay

Delay Bound/SPT Delay

cost
delay

Figure 6. Cost and delay under varying delay
bounds.

AMMO allows applications to effect a trade-off among
the performance metrics they consider. In ������ ,
for example, a particular delay constraint will correspond
to a particular achievable cost. By relaxing or tightening
the delay constraint, applications can control incurred cost
as shown in Figure 6. The x-axis varies the application-
specified constraint as a multiple of the optimal SPT de-
lay. The left-hand y-axis is the cost of the overlay relative to
a minimum cost spanning tree while the right hand y-axis
depicts the achieved delay as a multiple of the SPT delay.
In this example, we use a probe set size of 15 and, more
importantly, a degree constraint of 40. The degree con-
straint dictates how close AMMO is to the optimal (degree-
unbounded) SPT delay.
We achieve the delay as long as it is at least 30% larger

than the delay of the SPT. Though excluded for brevity,
our experiments show that increasing the degree allows
AMMO to achieve smaller delays while increasing the de-
gree pushes this point upward. Overlay cost comes within
5% of the MST cost when the delay constraint is relaxed
sufficiently. The knee of the curve for cost comes at approx-
imately 70% of the optimal SPT. Relaxing the delay beyond

this point does not result in significantly lower steady-state
cost (though it could take longer to achieve such cost).

5.4. Effects of Probe Set Size

100

150

200

250

300

350

10 12 14 16 18 20 22 24
1000

1200

1400

1600

1800

2000

2200

2400

T
im

e(
s)

P
er

 N
od

e
C

on
tr

ol
 O

ve
rh

ea
d

(B
ps

)

Random Subset Size

delay convergence time
cost convergence time

control overhead

Figure 7. Cost and delay convergence times
with resulting per-node probing overhead for
varying probe set sizes.

Probe set size refers to how many nodes are included in
RanSub subsets. Figure 7 plots the cost and delay conver-
gence time as well as probing overhead for various probe
set sizes. We define convergence time to be the time it takes
to come within 50% of the optimal MST cost and the time it
takes to fall within the delay constraint.We use������

with a delay constraint of 382 ms (���
�) and a degree
constraint of 10. Convergence time decreases as probe set
size increases, eventually leveling off at around 22. Note
that cost convergence is necessarily slower than delay con-
vergence since the overlay must first meet the delay con-
straint before it can begin making transformations to re-
duce the metric function (cost in this example). Figure 7
also shows that per-node probing overhead is small, rising
to less than 2300 Bps/node for a probe set size of 24. As ex-
pected this control overhead grows linearly with the probe
set size. With a probe set size of 10, it takes approximately
200 seconds to bring 95% of participants within the delay
bound (while details are omitted for brevity, this number is
considerably smaller for smaller topologies).

6. Conclusions

This paper presents the design, implementation, and eval-
uation of an adaptive and scalable algorithm to build multi-
metric overlay networks. This problem is NP-complete

given centralized information and static network condi-
tions. Thus, our challenge is to develop a distributed al-
gorithm that approximates the global optimum under
a variety of dynamic network conditions. In this con-
text, we make a number of contributions. First, we describe
a framework where an application can specify perfor-
mance constraints and a metric function indicating the rel-
ative priority of performance metrics. We show how to
use RanSub to build and maintain loop-free trees un-
der high levels of concurrency.
A detailed system evaluation shows that AMMO can con-

verge quickly to a close to optimal solution and that it can
quickly react to changing network conditions. We provide
evaluations of a SARO variant (constrained delay and cost
metric function) and AMMO Overcast (bandwidth metric
function). We further show how AMMO can strike a bal-
ance between conflicting performance metrics yielding an
overlay that is highly tuned to application needs.

References

[1] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scal-
able Application Layer Multicast. In Proceedings of ACM
SIGCOMM, August 2002.

[2] H. Chang, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger. Towards Capturing Representative AS-Level Inter-
net Topologies. In Proceedings of ACM SIGMETRICS, June
2002.

[3] C. Chekuri, S. Khanna, and J. Naor. A deterministic algo-
rithm for the cost-distance problem. In Symposium on Dis-
crete Algorithms, pages 232–233, 2001.

[4] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area Cooperative Storage with CFS. In Pro-
ceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP’01), October 2001.

[5] Y. hua Chu, S. Rao, and H. Zhang. A Case For End Sys-
tem Multicast. In Proceedings of the ACM Sigmetrics 2000
International Conference on Measurement and Modeling of
Computer Systems, June 2000.

[6] Y. hua Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling
Conferencing Applications on the Internet using an Overlay
Multicast Architecture. In Proceedings of ACM SIGCOMM,
August 2001.

[7] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. James W. O’Toole. Overcast: Reliable Multicasting
with an Overlay Network. In Proceedings of Operating Sys-
tems Design and Implementation (OSDI), October 2000.

[8] V. Kompella, J. Pasquale, and G. Polyzos. Two distributed al-
gorithms for multicasting multimedia information. In Proc.
2nd Intl. Conf. on Computer Communications and Networks
(ICCCN), 1993.

[9] V. P. Kompella, J. C. Pasquale, and G. C. Polyzos. Multicast
routing for multimedia communication. IEEE/ACM Trans-
actions on Networking, 1(3):286–292, 1993.

[10] D. Kostic, A. Rodriguez, J. Albrecht, A. Bhirud, and A. Vah-
dat. Using Random Subsets to Build Scalable Network Ser-
vices. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems, March 2003.

[11] D. Kostić, A. Rodriguez, J. Albrecht, and A. Vahdat. Bul-
let: High Bandwidth Data Dissemination Using an Overlay
Mesh. In Proceedings of the 19th ACM Symposium on Op-
erating System Principles, October 2003.

[12] F. Kuipers and P. V. Mieghem. Mamcra, a constrained-
based multicast routing algorithm. Computer Communica-
tions, 25(8):801–810, 2002.

[13] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[14] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.

Application-level Multicast using Content-Addressable Net-
works. In Third International Workshop on Networked
Group Communication, November 2001.

[15] S. Ratnasamy, P. F. M. Handley, R. Karp, and S. Shenker.
A Content Addressable Network. In Proceedings of SIG-
COMM 2001, August 2001.

[16] A. Rodriguez. Building Scalable and Adaptive Network Ser-
vices. PhD Dissertation, Duke University, December 2003.

[17] A. Rodriguez, C. Killian, D. Kostić, S. Bhat, and A. Vah-
dat. MACEDON: Methodology for Automatically Cre-
ating, Evaluating, and Designing Overlay Networks. In
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI), March 2004.

[18] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-Scale, Persistent Peer-to-Peer
Storage Utility. In Proceedings of the 18th ACM Sympo-
sium on Operating Systems Principles (SOSP’01), October
2001.

[19] A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel.
SCRIBE: The Design of a Large-scale Event Notification In-
frastructure. In Third International Workshop on Networked
Group Communication, November 2001.

[20] H. Salama, Y. Viniotis, and D. Reeves. An Efficient De-
lay Constrained Minimum Spanning Tree Heuristic. In Pro-
ceedings of the Fifth International Conference on Computer
Communications and Networks, 1996.

[21] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić,
J. Chase, and D. Becker. Scalability and Accuracy in a Large-
Scale Network Emulator. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation
(OSDI), December 2002.

[22] Z. Wang and J. Crowcroft. Quality-of-Service Routing for
Supporting Multimedia Applications. IEEE Journal of Se-
lected Areas in Communications, 14(7):1228–1234, 1996.

[23] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry:
An Infrastructure for Fault-tolerant Wide-area Location and
Routing. Technical Report UCB/CSD-01-1141, UC Berke-
ley, April 2001.

[24] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and
J. Kubiatowicz. Bayeux: An Architecture for Scalable and
Fault-tolerant Wide-Area Data Dissemination. In Proceed-
ings of the Eleventh International Workshop on Network
and Operating System Support for Digital Audio and Video,
2001.

