
Maintaining High Bandwidth under Dynamic Network Conditions

Dejan Kostić, Ryan Braud, Charles Killian, Erik Vandekieft, James W. Anderson,
Alex C. Snoeren and Amin Vahdat ∗

Department of Computer Science and Engineering
University of California, San Diego

{dkostic, rbraud, ckillian, evandeki, jwanderson, snoeren, vahdat}@cs.ucsd.edu

Abstract
The need to distribute large files across multiple wide-area

sites is becoming increasingly common, for instance, in sup-
port of scientific computing, configuring distributed systems,
distributing software updates such as open source ISOs or Win-
dows patches, or disseminating multimedia content. Recently
a number of techniques have been proposed for simultaneously
retrieving portions of a file from multiple remote sites with
the twin goals of filling the client’s pipe and overcoming any
performance bottlenecks between the client and any individ-
ual server. While there are a number of interesting tradeoffs
in locating appropriate download sites in the face of dynami-
cally changing network conditions, to date there has been no
systematic evaluation of the merits of different protocols. This
paper explores the design space of file distribution protocols
and conducts a detailed performance evaluation of a number
of competing systems running in both controlled emulation en-
vironments and live across the Internet. Based on our experi-
ence with these systems under a variety of conditions, we pro-
pose, implement and evaluate Bullet′ (Bullet prime), a mesh
based high bandwidth data dissemination system that outper-
forms previous techniques under both static and dynamic con-
ditions.

1 Introduction

The rapid, reliable, and efficient transmission of a data
object from a single source to a large number of receivers
spread across the Internet has long been the subject of
research and development spanning computer systems,
networking, algorithms, and theory. Initial attempts at
addressing this problem focused on IP multicast, a net-
work level primitive for constructing efficient IP-level
trees to deliver individual packets from the source to each
receiver. Fundamental problems with reliability, con-
gestion control, heterogeneity, and deployment limited
the widespread success and availability of IP multicast.

∗This research is supported in part by the Center for Networked
Systems, Hewlett Packard, IBM, and Intel. Vahdat and Snoeren are
supported by NSF CAREER awards (CCR-9984328, CNS-0347949).

Building on the experience gained from IP multicast, a
number of efforts then focused on building application-
level overlays [2, 9, 10, 12, 24] where a source would
transmit the content, for instance over multiple TCP con-
nections, to a set of receivers that would implicitly act as
interior nodes in a tree built up at the application level.

While certainly advancing the state of the art, tree-
based techniques face fundamental reliability and per-
formance limitations. First, bandwidth down an overlay
tree is guaranteed to be monotonically decreasing. For
instance, a single packet loss in a TCP transmission high
up in a tree can significantly impact the throughput to
all participants rooted at the node experiencing the loss.
Hence, in a large overlay, participants near the leaves are
likely to experience more limited bandwidth. Further,
because each node only receives data from its parent, the
failure of a single node can dramatically impact overall
system reliability and may cause scalability concerns un-
der churn as a potentially large number of nodes attempt
to rejoin the tree. Reliability in overlay trees is perhaps
even more of a concern than in IP-level multicast, since
end hosts are more likely to fail or to suffer from perfor-
mance anomalies relative to IP routers in the interior of
the network.

Thus, “third-generation” data dissemination infras-
tructures have most recently focused on building
application-level overlay meshes [3, 5, 13, 25]. The idea
here is that end hosts self-organize into a general mesh
by selecting multiple application-level peers. Each peer
transmits a disjoint set of the target underlying data to the
node, enabling the potential to greater resiliency to fail-
ure and increased performance. Reliability is improved
because the failure of any single peer will typically only
reduce the transmitted bandwidth by 1/n where n is the
total number of peers being maintained by a given node.
In fact, with a sufficient numbers of peers, the failure
of any one peer may go unnoticed because the remain-
ing peers may be able to quickly make up for the lost
bandwidth. This additional redundancy also enables each

node to regenerate its peer set in a more leisurely manner,
eliminating the “reconnection storm” that can result from
the failure of a node in an overlay tree. Mesh-based ap-
proaches may also improve overall bandwidth delivered
to all nodes as data can flow to receivers over multiple
disjoint paths. It is straightforward to construct scenarios
where two peers can deliver higher aggregate bandwidth
to a given node than any one can as a result of bottlenecks
in the middle of the network.

While a number of these mesh-based systems have
demonstrated performance and reliability improvements
over previous tree-based techniques, there is currently no
detailed understanding of the relative merits of existing
systems nor an understanding of the set of design issues
that most significantly affect end-to-end system perfor-
mance and reliability. We set out to explore this space,
beginning with our own implementation of Bullet [13].
Our detailed performance comparison of these systems
both live across PlanetLab [20] and in the ModelNet [28]
emulation environment led us to identify a number of key
design questions that appear to most significantly impact
overall system performance and reliability, including: i)
whether data is pushed from the source to receivers or
pulled by individual receivers based on discovering miss-
ing data items, ii) peer selection algorithms where nodes
determine the number and identity of peers likely to have
a good combination of high bandwidth and a large vol-
ume of missing data items, iii) the strategy for deter-
mining which data items to request and in what quantity
based on changing network conditions, iv) the strategy
employed by the sender to transmit blocks to its current
set of peers based on the data items currently queued for
transmission, and v) whether the data stream should be
encoded using, for instance, Erasure codes [17] or trans-
mitted unmodified.

By examining these questions in detail, we designed
and implemented Bullet′ (pronounced as Bullet prime), a
new mesh-based data dissemination protocol that outper-
forms existing systems, including Bullet, SplitStream,
and BitTorrent, by 25-70% in terms of download times,
under a variety of network conditions. Thus, the princi-
pal contribution of this work is an exploration and ini-
tial enumeration of the design space for a broad range
of mesh-based overlays and the design, implementation,
and evaluation of a system that we believe embodies
some of the “best practices” in this space, enabling good
performance and reliability under a variety of network
conditions, ranging from the static to the highly dynamic.

It is becoming increasingly important to synchronize
updates to a logical data volume across the Internet, such
as synchronizing FTP mirrors or updating installed soft-
ware in distributed testbeds such as PlanetLab and the
Grid. Today, the state of the art for disseminating updates
consists of having all clients contact a central repository

known to contain the most current version of the data to
retrieve any updates. Unfortunately, limited bandwidth
and CPU at any central repository limit the speed and re-
liability with which the data can be synchronized across
a large number of sites. We designed and implemented
Shotgun, a set of extensions to the popular rsync tool
to enable clients to synchronize their state with a central-
ized server orders of magnitude more quickly than previ-
ously possible.

The rest of this paper is organized as follows. Section
2 describes the design space for all systems doing large
scale file distribution, Section 3 describes the specific im-
plementation and architecture of Bullet′, and Section 4
presents the results of our experiments testing our exper-
imental strategies and comparisons with other systems,
including evaluation of Shotgun. Section 5 outlines the
related work in the field, and the paper concludes in Sec-
tion 6.

2 Design Principles and Patterns

Throughout the paper, we assume that the source trans-
mits the file as a sequence of blocks, that serve as the
smallest transfer unit. Otherwise, peers would not be
able to help each other until they had the entire file down-
loaded. In addition, we concentrate on the case when the
source of the file is the only node that has the file ini-
tially, and wishes to disseminate it to a large group of re-
ceivers as quickly as possible. This usage scenario corre-
sponds to a flash-crowd retrieving a popular file over the
Internet. In our terminology for peering relationships, a
sender is a node sending data to a receiver.

The design of any large-scale file distribution system
can be realized as careful decisions made regarding the
fundamental tenets of peer-to-peer applications and data
transfer. As we see them, these tenets are push vs. pull,
encoding data, finding the right peers, methods for re-
questing data from those peers, and serving data to others
in an effective manner. Additionally, an important design
consideration is whether the system should be fair to par-
ticipants or focus on being fast. In all cases, however,
the underlying goal of downloading files is always keep
your incoming pipe full of new data. This means that
nodes must prevent duplicate data transmission, restrict
control overhead in favor of distributing data, and adapt
to changing network conditions. In the following sec-
tions we enumerate these fundamental decisions which
all systems disseminating objects must make in more de-
tail.

2.1 Push or Pull
Options for distributing the file can be categorized by
whether data is pushed from sources to destinations,

pulled from sources by destinations, or a hybrid of the
two. Traditional streaming applications typically choose
the push methodology because data has low latency, is
coming at a constant rate, and all participants are sup-
posed to get all the data at the same time. To increase ca-
pacity, nodes may have multiple senders to them, and in
a push system, they must then devote overhead to keep-
ing their senders informed about what they have to pre-
vent receipt of duplicates. Alternately, systems can use a
pull mechanism where receivers must first learn of what
data exists and which nodes have it, and then request it.
This has the advantage that receivers, not senders, are in
control of the size and specification of which data is out-
standing to them, which allows them to control and adapt
to their environments more easily. However, this two-
step process of discovery followed by requesting means
additional delay before receiving data and extra control
messages in some cases.

2.2 Encoded or Unencoded

The simplest way of sending the file involves just sending
the original, or unencoded, blocks into the overlay. An
advantage of this approach is that receivers typically do
not have to fit the entire file into physical memory to sus-
tain high-performance. Incoming blocks can be cached
in memory, and later written to disk. Blocks only have to
be read when the peers request them. Even if the blocks
are not in memory and have to be fetched from the disk,
pipelining techniques can be used to absorb the cost of
disk reads. As a downside, sending the unencoded file
might expose the “last block” problem of some file distri-
bution mechanisms, when it becomes difficult for a node
to locate and retrieve the last few blocks of the file.

Recently, a number of erasure-correcting codes that
implement the “digital fountain” [4] approach were sug-
gested by researchers [15, 16, 17]. When the source
encodes the file with these codes, any (1 + ε)n correctly
received encoded blocks are sufficient to reconstruct the
original n blocks, with the typically low reception over-
head (ε) of 0.03 − 0.05. These codes hold the potential
of removing the “last block” problem, because there is
no need for a receiver to acquire any particular block, as
long as it recovers a sufficient number of distinct blocks.
In this paper, we assume that only the source is capa-
ble of encoding the file, and do not consider the potential
benefits of network coding [1], where intermediate nodes
can produce encoded packets from the ones they have re-
ceived thus far.

Based on the publicly available specification, we im-
plemented rateless erasure codes [17]. Although it is
straightforward to implement these codes with a low
CPU encoding and decoding overhead, they exhibit some
performance artifacts that are relevant from a systems

perspective. First, the reconstruction of the file cannot
make significant progress until a significant number of
the encoded blocks is successfully received. Even with
n received blocks (i.e., corresponding to the original file
size), only 30 percent of the file content can be recon-
structed [14]. Further, since the encoded blocks are com-
puted by XOR-ing random sets of original blocks, the
decoding stage requires random access to all of the re-
constructed file blocks. This pattern of access, coupled
with the bursty nature of the decoding process, causes
increased decoding time due to excessive disk swapping
if all of the decoded file blocks cannot fit into physical
memory 1. Consequently, the source is forced to transmit
the file as a serious of segments that can fit into physical
memory of the receivers. Even if all receivers have ho-
mogeneous memory size, this arrangement presents few
problems. First, the source needs to decide when to start
transmitting encoded blocks that belong to the next seg-
ment. If the file distribution mechanism exhibits consid-
erable latency between the time a block is first generated
and the time when nodes receive it, the source might send
too many unnecessary blocks into the overlay. Second,
receivers need to simultaneously locate and retrieve data
belonging to multiple segments. Opening too many TCP
connections can also affect overall performance. There-
fore, the receivers have to locate enough senders hosting
the segments they are interested in, while still being able
to fill their incoming pipe.

We have observed a 4 percent overhead when encod-
ing and decoding files of tens of MBs in size. Although
mathematically possible, it is difficult to make this over-
head arbitrary small via parameter settings or a large
number of blocks. Since the file blocks should be suf-
ficiently large to overcome the fixed overhead due to
per-block headers, we cannot use an excessive number
of blocks. Similarly, since a file consisting of a large
number of blocks may not fit into physical memory, a
segment may not have enough blocks to reduce the de-
coding overhead. Finally, the decoding process is sen-
sitive to the number of recovered degree-1 (unencoded)
blocks that are generated with relatively low probability
(e.g. 0.01). These blocks are necessary to start the de-
coding process and without a sufficient number of these
blocks the decoding process cannot complete.

In the remainder of the paper, we optimistically as-
sume that the entire file can fit into physical memory and
quantify the potential benefits of using encoding at the
source in Section 4.6.

1We are assuming a memory-efficient implementation of the codes
that releases the memory occupied by the encoded block when all the
original blocks that were used in in its construction are available. Per-
formance can be even worse if the encoded blocks are kept until the file
is reconstructed in full.

2.3 Peering Strategy

A node receives the file by peering with neighbors and
receiving blocks from them. To enable this, the node
requires techniques to learn about nodes in the system,
selecting ones to peer with which have useful data, and
determining the ideal set of peers which can optimize
the incoming bandwidth of useful data. Ideally, a node
would have perfect and timely information about distri-
bution of blocks throughout the system and would be
able to download any block from any other peer, but any
such approach requiring global knowledge cannot scale.
Instead, the system must approximate the peering deci-
sions. It can do this by using a centralized coordina-
tion point, though constantly updating that point with up-
dates of blocks received would also not scale, while also
adding a single point of failure. Alternatively, a node
could simply maintain a fixed set of peers, though this
approach would suffer from changing network and node
conditions or an initially poor selection of peers. One
might also imagine using a DHT to coordinate location
of nodes with given blocks. While we have not tested this
approach, we reason that it would not perform well due
to the extra overhead required for locating nodes with
each block. Overall, a good approach to picking peers
would be one which neither causes nodes to maintain
global knowledge, nor communicate with a large number
of nodes, but manages to locate peers which have a lot of
data to give it. A good peering strategy will also allow
the node to maintain a set of peers which is small enough
to minimize control overhead, but large enough to keep
the pipe full in the face of changing network conditions.

2.4 Request Strategy

In either a push or pull based system, there has to be a
decision made about which blocks should be queued to
send to which peers. In a pull based system, this is a re-
quest for block. Therefore we call this the request strat-
egy. For the request strategy, we need to answer several
important questions.

First, what is the best order for requesting blocks? For
example, if all nodes make requests for the blocks in the
same order, the senders in peering relationships will be
sending the same data to all the peers, and there would
be very little opportunity for nodes to help each other to
speed up the overall progress.

Second, for any given block, more than one of the
senders might have it. How does the node choose the
sender that is going to provide this particular block, or
in a pull based system, how can senders prevent queu-
ing the same block for the same node? Further, should a
node request the block immediately after it learns about
its existence at a sender, or should it wait until some of its

other peers acquire the same block? There is a tradeoff,
because reacting quickly might bring the block to this
node sooner, and make it available for its own receivers
to download sooner. However, the first sender over time
that has this block might not be the best one to serve it; in
this case it might be prudent to wait a bit longer, because
the block download time from this sender might be high
due to low available bandwidth.

Third, how much data should be requested from any
given sender? Requesting too few blocks might not fill
the node’s incoming pipe, whereas requesting too much
data might force the receiver to wait too long for a block
that it could have requested and received from some other
node.

Finally, where should the request logic be placed? One
option is to have the receiver make explicit requests for
blocks, which comes at the expense of maintaining data
structures that describe the availability of each block, the
time of requests, etc. In addition, this approach might
incur considerable CPU overhead for choosing the next
block to retrieve. If this logic is in the critical path, the
throughput in high-bandwidth settings may suffer. An-
other option is to place the decision-making at the sender.
This approach makes the receiver simpler, because it
might just need to keep the sender up-to-date with a di-
gest of blocks it currently has. Since a node might im-
plicitly request the same block from multiple senders,
this approach is highly resilient. On the other hand,
duplicate blocks could be sent from multiple senders if
senders do not synchronize their behavior. Further, mes-
sage overhead will be higher than in the receiver-driven
approach due to digests.

2.5 Sending Strategies
All techniques for distributing a file will need a strategy
for sending data to peers to optimize the performance
of the distribution. We define the sending strategy as
“given a set of data items destined for a particular re-
ceiver, in what order should they be sent?” This is differ-
entiated from the request strategy in that it is concerned
with the order of queued blocks rather than which blocks
to queue. Here, we separate the strategy of the single
source from that of the many peers, since for any file dis-
tribution to be successful, the source must share all parts
of the file with others.

Source

In this paper, we consider the case where the source is
available to send file blocks for the entire duration of a
file distribution session. This puts it in a unique posi-
tion to be able to both help all nodes, and to affect the
performance of the entire download. As a result, it is

especially important that the source not send the same
data twice before sending the entire file once. Otherwise
it may prevent fast nodes from completing because it is
still “hoarding” the last block. This can be accomplished
by splitting the file in various ways to send to its peers.
The source must also consider what kinds of reliability
and retransmission it should use and what happens in the
face of peer failure.

Non-source

There are several options on the order to send nodes data.
All of them fulfill the near-term goal for keeping a node’s
pipe full of useful data. But a forward thinking sender
has some other options available to it which help future
downloads, by making it easier for nodes to locate dis-
joint data. Consider that a node A will send blocks 1, 2,
and 3 to receivers B and C. If it sends them in numerical
order each time, B and C will both get 1 first. The util-
ity to nodes who have peered with both B and C is just
1 though, since there is only 1 new block available. But
if node A sends blocks in different orders, the utility to
peers of B and C is doubled. A good sending strategy
will create the greatest diversity of blocks in the system.

2.6 Fair-first or Fast-first

An important consideration for the design of a file dis-
tribution system is whether it is the highest priority that
it be fair to network participants, or fast. Some proto-
cols, like BitTorrent and SplitStream, have some notion
of fairness and try to make all nodes both give and take.
BitTorrent does this by using tit-for-tat in its sending and
requesting strategies, assuring that peers share and share
alike. SplitStream does this by requiring that each node
is forwarding at least as much as it is receiving. It is a
nice side effect that in a symmetric network, this equal
sharing strategy can be close to optimal, since all peers
can offer as much as they can take, and one peer is largely
as good as the next.

But this decision fundamentally prevents the possibil-
ity that some nodes have more to offer and can be ex-
ploited to do so. It is clear that there exist scenarios
where there are tradeoffs between being fair and being
fast. The appropriate choice largely depends on the use
of the application, financial matters, and the mindset of
the users in the system. Experience with some peer-to-
peer systems indicate that there exist nodes willing to
give more than they take, while other nodes cannot share
fairly due to network configurations and firewalls. In the
remainder of the paper, we assume that nodes are willing
to cooperate both during and after the file download, and
do not consider enforcing fairness.

3 Implementation and Architecture

After a careful analysis of the design space, we came to
the following conclusions about how Bullet′ was to be
structured:

• Bullet′ would use a hybrid push/pull (Section 2.1)
architecture where the source pushes and the re-
ceivers pull.

• The number of parameters that could be tweaked by
the end user to increase performance must be mini-
mized.

• Our system would support both the unencoded and
the source-encoded file transmission, described in
Section 2.2. We will quantify the potential benefits
of encoding.

3.1 Architectural Overview

3

S

BBAA CC

EEDD

4:Pushed blocks

6: F
ile

 in
fo8:

Pull
ed

7:R

eq
ue

st

1. Control
tree

2:
 R

an
su

b
C

ol
le

ct

3:
R

an
su

b
D

is
tri

bu
te

11
44

22

33

3

3

5: Ransubsubset: {B,C}

Figure 1: Bullet′ architectural overview. Gray lines rep-
resent a subset of peering relationships that carry explic-
itly pulled blocks.

Figure 1 depicts the architectural overview of Bullet′.
We use an overlay tree for joining the system and for
transmitting control information (shown in thin dashed
lines, as step 1). We use RanSub [12], a scalable, de-
centralized protocol, to distribute changing, uniformly
random subsets of file summaries over the control tree
(steps 2 and 3). The source pushes the file blocks to chil-
dren in the control tree (step 4). Using RanSub, nodes
advertise their identity and the block availability. Re-
ceivers use this information (step 5) to choose a set of
senders to peer with, receive their file information (step
6), request (step 7) and subsequently receive (step 8) file
blocks, effectively establishing an overlay mesh on top
of the underlying control tree. Moreover, receivers make
local decisions on the number of senders as well as the

amount of outstanding data, adjusting the overlay mesh
over time to conform to the characteristics of the under-
lying network. Meanwhile, senders keep their receivers
updated with the description of their newly received file
blocks (step 6). The specifics of our implementation are
described below.

3.2 Implementation

We have implemented Bullet′ using MACEDON.
MACEDON [22] is a tool which makes the development
of large scale distributed systems simpler by allowing us
to specify the overlay network algorithm without simul-
taneously implementing code to handle data transmis-
sion, timers, etc. The implementation of Bullet′ consists
of a generic file distribution application, the Bullet′ over-
lay network algorithm, the existing basic random tree
and RanSub algorithms, and the library code in MACE-
DON.

3.2.1 Download Application

The generic download application implemented for
Bullet′ can operate in either encoded or unencoded
mode. In the encoded mode, it operates by gener-
ating continually increasing block numbers and trans-
mitting them using macedon multicast on the
overlay algorithm. In unencoded mode, it oper-
ates by transmitting the blocks of the file once using
macedon multicast. This makes it possible for us
to compare download performance over the set of over-
lays specified in MACEDON. In both encoded and un-
encoded cases, the download application also supports a
request function from the overlay network to provide the
block of a given sequence number, if available, for trans-
mission. The download application also supports the re-
construction of the file from the data blocks delivered to
it by the overlay. The download application is param-
eterized and can take as parameters block size and file
name.

3.2.2 RanSub

RanSub is the protocol we use for distributing uniformly
random subsets of peers to all nodes in the overlay. Un-
like a centralized solution or one which requires state on
the order of the size of the overlay, Ransub is decentral-
ized and can scale better with both the number of nodes
and the state maintained. RanSub requires an overlay
tree to propagate random subsets, and in Bullet′ we use
the control tree for this purpose. RanSub works by pe-
riodically distributing a message to all members of the
overlay, and then collecting data back up the tree. At
each layer of the tree, data is randomized and compacted,

assuring that all peers see a changing, uniformly random
subset of data. The period of this distribute and collect is
configurable, but for Bullet′, it is set for 5 seconds. Also,
by decentralizing the random subset distribution, we can
include more application-state, an abstract which nodes
can use to make more intelligent decisions about which
nodes would be good to peer with.

3.3 Algorithms

3.3.1 Peering Strategy

In order for nodes to fill their pipes with useful data, it
is imperative that they are able to locate and maintain a
set of peers that can provide them with good service. In
the face of bandwidth changes and unstable network con-
ditions, keeping a fixed number of peers is suboptimal
(see Section 4.4). Not only must Bullet′ discard peers
whose service degrades, it must also adaptively decide
how many peers it should be downloading from/send-
ing to. Note that peering relationships are not inherently
bidirectional; two nodes wishing to receive data from
each other must establish peering links separately. Here
we use the term “sender” to refer to a peer a node is re-
ceiving data from and “receiver” to refer to a peer a node
is sending data to.

Each node maintains two variables, namely
MAX SENDERS and MAX RECEIVERS, which specify
how many senders and receivers the node wishes to have
at maximum. Initially, these values are set to 10, the
value we have experimentally chosen for the released
version of Bullet. Bullet′ also imposes hard limits of 6
and 25 for the number of minimum/maximum senders
and receivers. Each time a node receives a RanSub
distribute message containing a random subset of peers
and the summaries of their file content, it makes an eval-
uation about its current peer sets and decides whether
it should add or remove both senders and receivers. If
the node has its current maximum number of senders, it
makes a decision as to whether it should either “try out”
a new connection or close a current connection based
on the number of senders and bandwidth received when
the last distribute message arrived. A similar mechanism
is used to handle adding/removing receivers, except in
this case Bullet′ uses outgoing bandwidth instead of
incoming bandwidth. Figure 2 shows the pseudocode
for managing senders.

Once MAX SENDERS and MAX RECEIVERS have
been modified, Bullet′ calculates the average and stan-
dard deviation of bandwidth received from all of its
senders. It then sorts the senders in order of least band-
width received to most, and disconnects itself from any
sender who is more than 1.5 standard deviations away
from the mean, so long as it does not drop below the

void ManageSenders() {

if (size(senders) != MAX_SENDERS)
return;

if (num_prev_senders == 0) {
// try to add a new peer by default
MAX_SENDERS++;

}
else if(size(senders) > num_prev_senders) {
if(incoming_bw > prev_incoming_bw)

// bandwidth went up, try adding
// a sender
MAX_SENDERS++;

else
// adding a new sender was bad
MAX_SENDERS--;

}
else if (size(senders) < num_prev_senders) {
if(incoming_bw > prev_incoming_bw)

// losing a sender made us faster,
// try losing another
MAX_SENDERS--;

else
// losing a sender was bad
MAX_SENDERS++;

}
}

Figure 2: ManageSenders() Pseudocode

minimum number of connections (6). This way, Bullet′

is able to keep only the peers who are the most useful
to it. A fixed minimum bandwidth was not used so as
to not hamper nodes who are legitimately slow. In addi-
tion, the slowest sender is not always closed since if all
of a peer’s senders are approximately equal in terms of
bandwidth provided, then none of them should be closed.

A nearly identical procedure is executed to remove re-
ceivers who are potentially limiting the outgoing band-
width of a node. However, Bullet′ takes care to sort re-
ceivers based on the ratio of their bandwidth they are re-
ceiving from a particular sender to their total incoming
bandwidth. This is important because we do not want to
close peers who are getting a large fraction of their band-
width from a given sender. We chose the value of 1.5
standard deviations because 1 would lead to too many
nodes being closed whereas 2 would only permit a very
few peers to ever be closed.

3.3.2 Request Strategy

We considered using four different request strategies
when designing Bullet′. All of the strategies are for mak-
ing local decisions on either the unencoded or source-
encoded file. Given a per-peer list representing blocks
that are available from that peer, the following are possi-
ble ways to order requests:

• First encountered This strategy will simply ar-
range the lists based on block availability. That is,
blocks that are just discovered by a node will be re-
quested after blocks the node has known about for

a while. As an example, this might correspond to
all nodes proceeding in lockstep in terms of down-
load progress. The resulting low block diversity
this causes in the system could lead to lower per-
formance.

• Random This method will randomly order each list
with the intent of improving the block diversity in
the system. However, there is a possibility of re-
questing a block that many other nodes already have
which does not help block diversity. As a result, this
strategy might not significantly improve the overall
system performance.

• Rarest The rarest technique is the first that looks at
block distributions among a node’s peers when or-
dering the lists. Each list will be ordered with the
least represented blocks appearing first. This strat-
egy has no method for breaking ties in terms of rar-
ity, so it is possible that blocks quickly go from be-
ing under represented to well represented when a set
of nodes makes the same deterministic choice.

• Rarest random The final strategy we describe is an
improvement over the rarest approach in that it will
choose uniformly at random from the blocks that
have the highest rarity. This strategy eliminates the
problem of deterministic choices leading to subop-
timal conditions.

In order to decide which strategy worked the best, we
implemented all four in Bullet′. We present our findings
in Section 4.3.

3.3.3 Flow Control

Although the rarest random request strategy enables
Bullet′ to request blocks from peers in a way that encour-
ages block diversity, it does not specify how many blocks
a node should request from its peers at once. This choice
presents a tradeoff between control overhead (making re-
quests) and adaptivity. On one hand, a node could re-
quest one block at a time, not requesting another one
until the first arrived. Although stopping and waiting
would provide maximum insulation to changing network
conditions, it would also leave pipes underutilized due to
the round trip time involved in making the next request.
At the other end of the spectrum is a strategy where a
node would request everything that it knew about from
its peers as soon as it learned about it. In this case,
the control traffic is reduced and the node’s pipe from
each of its peers has a better chance of being full but
this technique has major flaws when network conditions
change. If a peer suddenly slows down, the node will
find itself stuck waiting for a large number of blocks to

void ManageOutstanding (sender, block) {
// start with current value
sender->desired = sender->requested + 1;

if (block->wasted <= 0 || block->in_front <= 1)
sender->desired -=

0.4*block->wasted*sender->bandwidth/block_size);

if (block->wasted <= 0 && block->in_front > 1)
sender->desired -= 0.226*(block->in_front - 1);

}

Figure 3: Pseudocode for setting the maximum number
of per-peer outstanding blocks.

come in at a slow rate. We have experimented with can-
celing of blocks that arrive “slowly”, and found that in
many cases these blocks are “in-flight” or in the sender’s
socket buffer, making it difficult to effectively stop their
retrieval without closing the TCP connection.

As seen in Section 4.5, using a fixed number of out-
standing blocks will not perform well under a wide vari-
ety of conditions. To remedy this situation, Bullet′ em-
ploys a novel flow control algorithm that attempts to dy-
namically change the maximum number of blocks a node
is willing to have outstanding from each of its peers. Our
control algorithm is similar to XCP’s [11] efficiency con-
troller, the feedback control loop for calculating the ag-
gregate feedback for all the flows traversing a link. XCP
measures the difference in the rates of incoming and out-
going traffic on a link, and computes the total number
of bytes by which the flows’ congestion windows should
increase or decrease. XCP’s goal is to maintain 0 packets
queued on the bottleneck link. For the particular values
of control parameters α = 0.4, β = 0.226, the control
loop is stable for any link bandwidth and delay.

We start with the original XCP formula and adapt it.
Since we want to keep each pipe full while not risking
waiting for too much data in case the TCP connection
slows down, our goal is to maintain exactly 1 block in
front of the TCP socket buffer, for each peer. With each
block it sends, sender measures and reports two values to
the receiver that runs the algorithm depicted in Figure 3
in the pseudocode. The first value is in front, corre-
sponding to the number of queued blocks in front of the
socket buffer when the request for the particular block
arrives. The second value is wasted, and it can be ei-
ther positive or negative. If it is negative, it corresponds
to the time that is “wasted” and could have been occu-
pied by sending blocks. If it is positive, it represents the
“service” time this block has spent waiting in the queue.
Since this time includes the time to service each of the
in front blocks, we take care not to double count the
service time in this case. To convert the wasted (service)
time into units applicable to the formula, we multiply it
by the bandwidth measured at the receiver, and divide by

block size to derive the additional (reduced) number of
blocks receiver could have requested. Once we decide
to change the number of outstanding blocks, we mark a
block request and do not make any adjustments until that
block arrives. This technique allows us to observe any
changes caused by our control algorithm before taking
any additional action. Further, just matching the rate at
which the blocks are requested with the sending band-
width in an XCP manner would not saturate the TCP
connection. Therefore, we take the ceiling of the
non-integer value for the desired number of outstanding
blocks whenever we increase this value.

Although Bullet′ knows how much data it should re-
quest and from whom, a mechanism is still needed that
specifies when the requests should be made. Initially, the
number of blocks outstanding for all peers starts at 3, so
when a node gains a sender it will request up to 3 blocks
from the new peer. Conceptually, this corresponds to the
pipeline of one block arriving at the receiver, with one
more in-flight, and the request for the third block reach-
ing the sender. Whenever a block is received, the node
re-evaluates the potential from this peer and requests up
to the new maximum outstanding.

3.3.4 Staying Up-To-Date

One small detail we have deferred until now is how nodes
become aware of what their peers have. Bullet′ nodes use
a simple bitmap structure to transmit diffs to their peers.
These diffs are incremental, such that a node will only
hear about a particular block from a peer once. This ap-
proach helps to minimize wasted bandwidth and decou-
ples the size of the diff from the size of the file being
distributed. Currently, a diff may be transmitted from
node A to B in one of two circumstances - either because
B has nothing requested of A, or because B specifically
asked for a diff to be sent. The latter would occur when
B is about to finish requesting all of the blocks A cur-
rently has. An interesting effect of this mechanism is that
diff sending is automatically self clocking; there are no
fixed timers or intervals where diffs are sent at a specific
rate. Bullet′ automatically adjusts to the data consump-
tion rates of each individual peer.

3.3.5 Sending Strategy

As mentioned previously, Bullet′ uses a hybrid push/pull
approach for data distribution where the source behaves
differently from everyone else. The source takes a rather
simple approach: it sends a block to each of its RanSub
children iteratively until the entire file has been sent. If
a block cannot be sent to one child (because the pipe to
it is already full), the source will try the next child in a
round robin fashion until a suitable recipient is found. In

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400 450

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

Physical Link Speed Possible
MACEDON TCP feasible + startup

BulletPrime
Bullet

BitTorrent
MACEDON SplitStream MS

Figure 4: Comparison of Bullet′ to BitTorrent, Bullet,
SplitStream and optimal case for 100MB file size under
random network packet losses. The legend is ordered top
to bottom, while the lines are ordered from left to right.

this manner, the source never wastes bandwidth forcing
a block on a node that is not ready to accept it. Once
the source makes each of the file blocks available to the
system, it will advertise itself in RanSub so that arbitrary
nodes can benefit from having a peer with all of the file
blocks.

From the perspective of non-source nodes, determin-
ing the order in which to send requested blocks is equally
as simple. Since Bullet′ dynamically determines the
number of outstanding requests, nodes should always
have approximately one outstanding request at the ap-
plication level on any peer at any one time. As a result,
the sender can simply serve requests in FIFO order since
there is not much of a choice to make among such few
blocks. Note that this approach would not be optimal
for all systems, but since Bullet′ dynamically adjusts the
number of requests to have outstanding for each peer, it
works well.

4 Evaluation

To conduct a rigorous analysis of our various design
tradeoffs, we needed to construct a controlled experi-
mental environment where we could conduct multiple
tests under identical conditions. Rather than attempt to
construct a necessarily small isolated network test-bed,
we present results from experiments using the Model-
Net [28] network emulator, which allowed us to evaluate
Bullet′ on topologies consisting of 100 nodes or more. In
addition, we present experimental results over the wide-
area network using the PlanetLab [20] testbed.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000 1100

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime
Bullet

BitTorrent
MACEDON SplitStream MS

Figure 5: Comparison of Bullet′ to BitTorrent, Bul-
let, and SplitStream for 100MB file size under synthetic
bandwidth changes and random network packet losses.

4.1 Experimental Setup

Our ModelNet experiments make use of 25 2.0 and 2.8-
Ghz Pentium-4s running Xeno-Linux 2.4.27 and inter-
connected by 100-Mbps and 1-Gbps Ethernet switches.
In the experiments presented here, we multiplex one hun-
dred logical end nodes running our download applica-
tions across the 25 Linux nodes (4 per machine). Mod-
elNet routes packets from the end nodes through an em-
ulator responsible for accurately emulating the hop-by-
hop delay, bandwidth, and congestion of a given network
topology; a 1.4-Ghz Pentium III running FreeBSD-4.7
served as the emulator for these experiments.

All of our experiments are run on a fully intercon-
nected mesh topology, where each pair of overlay par-
ticipants are directly connected. While admittedly not
representative of actual Internet topologies, it allows us
maximum flexibility to affect the bandwidth and loss rate
between any two peers. The inbound and outbound ac-
cess links of each node are set to 6 Mbps, while the nom-
inal bandwidth on the core links is 2 Mbps. In an at-
tempt to model the wide-area environment [21], we con-
figure ModelNet to randomly drop packets on the core
links with probability ranging from 0 to 3 percent. The
loss rate on each link is chosen uniformly at random and
fixed for the duration of an experiment. To approximate
the latencies in the Internet [7, 21], we set the propaga-
tion delay on the core links uniformly at random between
5 and 200 milliseconds, while the access links have one
millisecond delay.

For most of the following sections, we conduct iden-
tical experiments in two scenarios: a static bandwidth
case and a variable bandwidth case. Our bandwidth-
change scenario models changes in the network band-

 0

 0.2

 0.4

 0.6

 0.8

 1

 160 180 200 220 240 260 280 300 320

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime rarest random request strategy
BulletPrime random request strategy

BulletPrime first request strategy

Figure 6: Impact of request strategy on Bullet′ perfor-
mance while downloading a 100 MB file under random
network packet losses.

width that correspond to correlated and cumulative de-
creases in bandwidth from a large set of sources from
any vantage point. To effect these changes, we decrease
the bandwidth in the core links with a period of 20 sec-
onds. At the beginning of each period, we choose 50
percent of the overlay participants uniformly at random.
For each participant selected, we then randomly choose
50 percent of the other overlay participants and decrease
the bandwidth on the core links from those nodes to 50
percent of the current value, without affecting the links
in the reverse direction. The changes we make are cumu-
lative; i.e., it is possible for an unlucky node pair to have
25% of the original bandwidth after two iterations. We
do not alter the physical link loss rates that were chosen
during topology generation.

4.2 Overall Performance
We begin by studying how Bullet′ performs overall, us-
ing the existing best-of-breed systems as comparison
points. For reference, we also calculate the best achiev-
able performance given the overhead of our underlying
transport protocols. Figure 4 plots the results of down-
loading a 100-MB file on our ModelNet topology using
a number of different systems. The graph plots the cu-
mulative distribution function of node completion times
for four experimental runs and two calculations. Starting
at the left, we plot download times that are optimal with
respect to access link bandwidth in the absence of any
protocol overhead. We then estimate the best possible
performance of a system built using MACEDON on top
of TCP, accounting for the inherent delay required for
nodes to achieve maximum download rate. The remain-
ing four lines show the performance of Bullet′ running in

 0

 0.2

 0.4

 0.6

 0.8

 1

 160 180 200 220 240 260 280 300 320 340

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime, 14 senders, 14 receivers
BulletPrime, dyn. #senders,#receivers
BulletPrime, 10 senders, 10 receivers

BulletPrime, 6 senders, 6 receivers

Figure 7: Bullet′ performance under random network
packet losses for static peer set sizes of 6, 10, 14, and
the dynamic peer set size sizing case while downloading
a 100 MB file.

the unencoded mode, Bullet, and BitTorrent, our MACE-
DON SplitStream implementation, in roughly that order.
Bullet′ clearly outperforms all other schemes by approxi-
mately 25%. The slowest Bullet′ receiver finishes down-
loading 37% faster than for other systems. Bullet′’s per-
formance is even better in the dynamic scenario (faster
by 32%-70%), shown in Figure 5.

We set the transfer block size to 16 KB in all of our
experiments. This value corresponds to BitTorrent’s sub-
piece size of 16KB, and is also shared by the Bullet
and SplitStream. For all of our experiments, we make
sure that there is enough physical memory on the ma-
chines hosting the overlay participants to cache the en-
tire file content in memory. Our goal is to concentrate on
distributed algorithm performance and not worry about
swapping file blocks to and from the disk. Bullet and
SplitStream results are optimistic since we do not per-
form encoding and decoding of the file. Instead, we set
the encoding overhead to 4% and declare the file com-
plete when a node has received enough file blocks.

4.3 Request Strategy

Heartened by the performance of Bullet′ with respect to
other systems, we now focus our attention on the var-
ious critical aspects of our design that we believe con-
tribute to Bullet′’s superior performance. Figure 6 shows
the performance of Bullet′ using three different peer re-
quest strategies, again using the CDF of node completion
times. In this case each node is downloading a 100 MB
file. We argue the goal of a request strategy is to promote
block diversity in the system, allowing nodes to help each
other. Not surprisingly, we see that the first-encountered

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 200 300 400 500 600 700 800 900 1000 1100

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime, 14 senders, 14 receivers
BulletPrime, dyn. #senders,#receivers
BulletPrime, 10 senders, 10 receivers

BulletPrime 6 senders, 6 receivers

Figure 8: Bullet′ performance under synthetic bandwidth
changes and random network packet losses for static peer
set sizes of 6, 10, 14, and the dynamic peer set size sizing
case while downloading a 100 MB file.

request strategy performs the worst. While the rarest-
random performs best among the strategies considered
for 70% of the receivers. For the slowest nodes, the ran-
dom strategy performs better. When a receiver is down-
loading from senders over lossy links, higher loss rates
increase the latency of block availability messages due
to TCP retransmissions and use of the congestion avoid-
ance mechanism. Subsequently, choosing the next block
to download uniformly at random does a better job of
improving diversity than the rarest-random strategy that
operates on potentially stale information.

4.4 Peer Selection
In this section we demonstrate the impossibility of
choosing a single optimal number of senders and re-
ceivers for each peer in the system, arguing for a dynamic
approach. In Figure 7 we contrast Bullet′’s performance
with 10 and 14 peers (for both senders and receivers)
while downloading a 100 MB file. The system config-
ured with 14 peers outperforms the one with 10 because
in a lossy topology like the one we are using, having
more TCP flows makes the node’s incoming bandwidth
more resilient to packet losses. Our dynamic approach
is configured to start with 10 senders and receivers, but
it closely tracks the performance of the system with the
number of peers fixed to 14 for 50% of receivers. Under
synthetic bandwidth changes (Figure 8), our dynamic ap-
proach matches, and sometimes exceeds the performance
of static setups.

For our final peering example, we construct a 100 node
topology with ample bandwidth in the core (10Mbps,
1ms latency links) with 800 Kbps access links and with-

 0

 0.2

 0.4

 0.6

 0.8

 1

 141 142 143 144 145 146 147 148 149 150

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime, 10 senders, 10 receivers
BulletPrime, dyn. #senders,#receivers
BulletPrime, 14 senders, 14 receivers

Figure 9: Bullet′ performance in the absence of band-
width changes and random packet losses for static peer
set sizes of 10, 14, and the dynamic peer set size sizing
case while downloading a 10 MB file in a topology with
constrained access links.

out random network packet losses. Figure 9 shows that,
unlike in the previous experiments, Bullet′ configured
for 14 peers performs worse than in a setup with 10
peers. Having more peers in this constrained environ-
ment forces more maximizing TCP connections to com-
pete for bandwidth. In addition, maintaining more peers
requires sending more control messages, further decreas-
ing the system performance. Our dynamic approach
tracks, and sometimes exceeds, the performance of the
better static setup.

These cases clearly demonstrate that no statically con-
figured peer set size is appropriate for a wide range of
network environments, and a well-tuned system must dy-
namically determine the appropriate peer set size.

4.5 Outstanding Requests

We now explore determining the optimal number of per-
peer outstanding requests. Other systems use a fixed
number of outstanding blocks. For example, BitTorrent
tries to maintain five outstanding blocks from each peer
by default. For the experiments in this section, we use an
8KB block, and configure the Linux kernel to allow large
receiver window sizes. In our first topology, there are
25 participants, interconnected with 10Mbps links with
100ms latency. In Figure 10 we show Bullet′’s perfor-
mance when configured with 3, 6, 9, 15, and 50 per-
peer outstanding blocks for up to 5 senders. The num-
ber of outstanding requests refers to the total number of
block requests to any given peer, including blocks that
are queued for sending, and blocks and requests that are
in-flight. As we can see, the dynamic technique closely

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 120 140 160 180 200 220 240

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime , 50 outst
BulletPrime , dyn outst
BulletPrime , 15 outst
BulletPrime , 9 outst
BulletPrime , 6 outst
BulletPrime , 3 outst

Figure 10: Bullet′ performance with neither bandwidth
changes nor random network packet losses for 3, 6, 9,
15, 50 outstanding blocks, and for the dynamic queue
sizing case while downloading a 100 MB file

tracks the performance of cases with a large number of
outstanding blocks. Having too few outstanding requests
is not enough to fill the bandwidth-delay product of high-
bandwidth, high-latency links.

Although it is tempting to simplify the system by
requesting the maximum number of blocks from each
peer, Figure 11 illustrates the penalty of requesting more
blocks than it is required to saturate the TCP connection.
In this experiment, we instruct ModelNet to drop packets
uniformly at random with probability ranging between 0
and 1.5 percent on the core links. Due to losses, TCP
achieves lower bandwidths, requiring less data in-flight
for maximum performance. Under these loss-induced
TCP throughput fluctuations, our dynamic approach out-
performs all static cases. Figure 12 provides more insight
into this case. For this experiment, we have 8 partici-
pants including the source, with 6 nodes receiving data
from the source and reconciling among each other over
10Mbps, 1ms latency links. We use 8KB blocks and dis-
able peer management. The 8th node is only download-
ing from the 6 peers over dedicated 5Mbps, 100ms la-
tency links. Every 25 seconds, we choose another peer
from these 6, and reduce the bandwidth on its link to-
ward the 8th node to 100Kbps. These cascading band-
width changes are cumulative, i.e. in the end, the 8th
node will have only 100Kbps links from its peers. Our
dynamic scheme outperforms all fixed sizing choices for
the slowest, 8th node, by 7 to 22 percent. Placing too
many requests on a connection to a node that suddenly
slows down forces the receiver to wait too long for these
blocks to arrive, instead of retrieving them from some
other peer.

 0

 0.2

 0.4

 0.6

 0.8

 1

 100 150 200 250 300 350 400

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime , dyn outst
BulletPrime , 15 outst
BulletPrime , 50 outst
BulletPrime , 6 outst
BulletPrime , 3 outst

Figure 11: Bullet′ performance under random network
packet losses while downloading a 100 MB file. CDF
line for 9 blocks omitted for readability.

4.6 Potential Benefits of Source Encoding

The purpose of this section is to quantify the po-
tential benefits of encoding the file at the source. To-
wards this end, Figure 13 shows the average block inter-
arrival times among the 99 receivers, while downloading
a 100MB file. To improve the readability of the graph,
we do not show the maximum block inter-arrival times,
which observe a similar trend. A system that has a pro-
nounced “last-block” problem would exhibit a sharp in-
crease in the block inter-arrival time for the last several
blocks. To quantify the potential benefits of encoding,
we first compute the overall average block inter-arrival
time tb. We then consider the last twenty blocks and cal-
culate the cumulative overage of the average block inter-
arrival time over tb. In this case overage amounts to 8.38
seconds. We contrast this value to the potential increase
in the download time due to a fixed 4 percent encoding
overhead of 7.60 seconds, while optimistically assum-
ing that downloads using source encoding would not ex-
hibit any deviation in the download times of the last few
blocks. We conclude that encoding at the source in this
scenario would not be of clear benefit in improving the
average download time. This finding can be explained
by the presence of a large number of nodes that will have
a particular block and will be available to send it to other
participants. Encoding at the source or within the net-
work can be useful when the source becomes unavailable
soon after sending the file once and with node churn [8].

4.7 PlanetLab

This section contains results from the deployment of
Bullet′ over the PlanetLab [20] wide-area network

 0

 0.2

 0.4

 0.6

 0.8

 1

 95 100 105 110 115 120 125 130 135 140 145 150

P
er

ce
nt

ag
e

of
 n

od
es

download time(s)

BulletPrime , dyn outst
BulletPrime , 9 outst

BulletPrime , 15 outst
BulletPrime , 50 outst

Figure 12: Bullet′ performance under synthetic band-
width changes while downloading a 100 MB file. CDF
lines for 3 and 6 omitted because the 8th node takes con-
siderably more time to finish in these cases.

testbed. For our first experiment, we chose 41 nodes
for our deployment, with no two machines being de-
ployed at the same site. We configured Bullet′, Bullet,
and SplitStream (MACEDON MS implementation) to
use a 100KB block size. Bullet and SplitStream were not
performing the file encoding/decoding; instead we mark
the downloads as successful when a required number
of distinct file blocks is successfully received, including
fixed 4 percent overhead that an actual encoding scheme
would incur. We see in Figure 14 that Bullet′ consis-
tently outperforms other systems in the wide-area. For
example, the slowest Bullet′ node completes the 50MB
download approximately 400 seconds sooner than Bit-
Torrent’s slowest downloader.

4.8 Shotgun: a Rapid Synchronization
Tool

This section presents Shotgun, a set of extensions to
the popular rsync [27] tool to enable clients to syn-
chronize their state with a centralized server orders of
magnitude more quickly than previously possible. At a
high-level, Shotgun works by wrapping appropriate in-
terfaces to Bullet′ around rsync. Shotgun is useful, for
example, for a user who wants to run an experiment on
a set of PlanetLab[20] nodes. Because each node only
has local storage, the user must somehow copy (using
scp or rsync) her program files to each node individ-
ually. Each time she makes any change to her program,
she must re-copy the updated files to all the nodes she is
using. If the experiment spans hundreds of nodes, then
copying the files requires opening hundreds of ssh con-
nections, all of which compete for bandwidth.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 1000 2000 3000 4000 5000 6000 7000

B
lo

ck
 in

te
r-

ar
riv

al
 ti

m
e(

s)

Block number

Average

Figure 13: Block inter-arrival times for a 100 MB file
under random network packet losses in the absence of
bandwidth changes. The block numbers on the X axis
correspond to the order in which nodes retrieve blocks,
not the actual block numbers.

To use Shotgun, the user simply starts shotgund, the
Shotgun multicast daemon, on each of his nodes. To dis-
tribute an update, the user runs shotgun sync, pro-
viding as arguments a path to the new software image,
a path to the current software image, and the host name
of the source of the Shotgun multicast tree (this can be
the local machine). Next, shotgun sync runs rsync
in batch mode between the two software image paths,
generating a set of logs describing the differences and
records the version numbers of the old and new files.
shotgun sync then archives the logs into a single tar
file and sends it to the source, which then rapidly dis-
seminates it to all the clients using the multicast overlay.
Each client’s shotgund will download the update, and
then invoke shotgun sync locally to apply the update
if the update’s version is greater than the node’s current
version.

Running an rsync instance for each target node over-
loads the source node’s CPU with a large number of
rsync processes all competing for the disk, CPU, and
bandwidth. Therefore, we have attempted to experimen-
tally determine the number of simultaneous rsync pro-
cesses that give the optimal overall performance using
the staggered approach. Figure 15 shows that Shotgun
outperformsrsync (1, 2, 4, 8, and 16 parallel instances)
by two orders of magnitude. Another interesting result
from this graph is that the constraining factor for Planet-
Lab nodes is the disk, not the network. On average, most
nodes spent twice as much time replaying the rsync logs
locally then they spent downloading the data.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600 700

Fr
ac

tio
n

of
 N

od
es

Time

BulletPrime
SplitstreamSpeedtest

BulletSpeedtest
BitTorrent

Figure 14: Comparison of Bullet′ to Bullet, BitTorrent,
and SplitStream for 50MB file size on PlanetLab.

5 Related Work

Overcast [10] constructs a bandwidth-optimized overlay
tree among dedicated infrastructure nodes. An incom-
ing node joins at the source and probes for acceptable
bandwidth under one if its siblings to descend down the
tree. A node’s bandwidth and reliability is determined
by characteristics of the network between itself and its
parent and is lower than the performance and reliability
provided by an overlay mesh.

Narada [9] constructs a mesh based on a k-spanner
graph, and uses bandwidth and latency probing to im-
prove the quality of the mesh. It then employs stan-
dard routing algorithms to compute per-source forward-
ing trees, in which a node’s performance is still defined
by connectivity to its parent. In addition, the group mem-
bership protocol limits the scale of the system.

Snoeren et al. [26] use an overlay mesh to send XML-
encoded data. The mesh is structured by enforcing k par-
ents for each participant. The emphasis of this primarily
push-based system is on reliability and timely delivery,
so nodes flood the data over the mesh.

In FastReplica [6] file distribution system, the source
of a file divides the file into n blocks, sends a differ-
ent block to each of the receivers, and then instructs the
receivers to retrieve the blocks from each other. Since
the system treats every node pair equally, overall perfor-
mance is determined by the transfer rate of the slowest
end-to-end connection.

BitTorrent [3] is a system in wide use in the Internet
for distribution of large files. Incoming nodes rely on
the centralized tracker to provide a list of existing sys-
tem participants and system-wide block distribution for
random peering. BitTorrent enforces fairness via a tit-
for-tat mechanism based on bandwidth. Our inspection

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000

Fr
ac

tio
n

of
 N

od
es

Time

Shotgun (Download Only)
Shotgun (Download + Update)

2 parallel rsync
4 parallel rsync
8 parallel rsync

16 parallel rsync

Figure 15: The aggregate completion time for varying
number of parallel rsync processes for an update with
24MB of deltas on 40 PlanetLab nodes.

of the BitTorrent code reveals hard coded constants for
request strategies and peering strategies, potentially lim-
iting the adaptability of the system to a variety of net-
work conditions relative to our approach. In addition,
tracker presents a single point of failure and limits the
system scalability.

SplitStream [5] aims to construct an interior-node dis-
joint forest of k Scribe [24] trees on top of a scalable
peer-to-peer substrate [23]. The content is split into k
stripes, each of which is pushed along one of the trees.
This system takes into account physical inbound and out-
bound link bandwidth of a node when determining the
number of stripes a node can forward. It does not, how-
ever, consider the overall end-to-end performance of an
overlay path. Therefore, system throughput might be de-
creased by congestion that does not occur on the access
links.

In CoopNet [18], the source of the multimedia content
computes locally random or node-disjoint forests of trees
in a manner similar to SplitStream. The trees are pri-
marily designed for resilience to node departures, with
network efficiency as the second goal.

Slurpie [25] improves upon the performance of Bit-
Torrent by using an adaptive downloading mechanism to
scale the number of peers a node should have. How-
ever, it does not have a way of dynamically changing the
number of outstanding blocks on a per-peer basis. In ad-
dition, although Slurpie has a random backoff algorithm
that prevents too many nodes from going to the source
simultaneously, nodes can connect to the webserver and
request arbitrary blocks. This would increase the mini-
mum amount of time it takes all blocks to be made avail-
able to the Slurpie network, hence leading to increased

minimum download time.
Avalanche [8] is a file distribution system that uses

network coding [1]. The authors demonstrate the useful-
ness of producing encoded blocks by all system partici-
pants under scenarios when the source departs soon after
sending the file once, and on specific network topolo-
gies. There are no live evaluation results of the system,
but it is likely Avalanche will benefit from the techniques
outlined in this paper. For example, Avalanche partic-
ipants will have to choose a number of sending peers
that will fill their incoming pipes. In addition, receivers
will have to negotiate carefully the transfers of encoded
blocks produced at random to avoid bandwidth waste
due to blocks that do not aid in file reconstruction, while
keeping the incoming bandwidth high from each peer.

CoDeploy [19] builds upon CoDeeN, an existing
HTTP Content Distribution Network (CDN), to support
dissemination of large files. In contrast, Bullet′ oper-
ates without infrastructure support and achieves band-
width rates (7Mbps on average with a source limited to
10Mbps) that exceed CoDeploy’s published results.

Young et al. [29] construct an overlay mesh of k edge-
disjoint minimum cost spanning trees (MSTs). The al-
gorithm for distributed construction of trees uses over-
lay link metric information such as latency, loss rate,
or bandwidth that is determined by potentially long and
bandwidth consuming probing stage. The resulting trees
might start resembling a random mesh if the links have to
be excluded in an effort to reduce the probing overhead.
In contrast, Bullet′ builds a content-informed mesh and
completely eliminates the need for probing because it
uses transfers of useful information to adapt to the char-
acteristics of the underlying network.

6 Conclusions

We have presented Bullet′, a system for distributing large
files across multiple wide-area sites in a wide range dy-
namic of network conditions. Through a careful eval-
uation of design space parameters, we have designed
Bullet′ to keep its incoming pipe full of useful data with a
minimal amount of control overhead from a dynamic set
of peers. In the process, we have defined the important
aspects of the general data dissemination problem and
explored several possibilities within each aspect. Our re-
sults validate that each of these tenets of file distribution
is an important consideration in building file distribution
systems. Our experience also shows that strategies which
have tunable parameters might perform well in a certain
range of conditions, but that once outside that range they
will break down and perform worse than if they had been
tuned differently. To combat this problem, Bullet′ em-
ploys adaptive strategies which can adjust over time to
self-tune to conditions which will perform well in a much

wider range of conditions, and indeed in many scenarios
of dynamically changing conditions. Additionally, we
have compared Bullet′ with BitTorrent, Bullet and Split-
Stream. In all cases, Bullet′ outperforms other systems.

Acknowledgments

We would like to thank David Becker for his invaluable
help with our ModelNet experiments and Ken Yocum for
his comments on our flow control algorithm. In addition,
we thank our shepherd Atul Adya and our anonymous
reviewers who provided excellent feedback.

References

[1] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and
Raymond W. Yeung. Network Information Flow. In IEEE
Transactions on Information Theory, vol. 46, no. 4, 2000.

[2] Suman Banerjee, Bobby Bhattacharjee, and Christopher
Kommareddy. Scalable Application Layer Multicast. In
Proceedings of ACM SIGCOMM, August 2002.

[3] Bittorrent. http://bitconjurer.org/BitTorrent.

[4] John W. Byers, Michael Luby, Michael Mitzenmacher,
and Ashutosh Rege. A Digital Fountain Approach to Re-
liable Distribution of Bulk Data. In Proceedings of ACM
SIGCOMM, 1998.

[5] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec,
Animesh Nandi, Antony Rowstron, and Atul Singh. Split-
stream: High-bandwidth Content Distribution in Coop-
erative Environments. In Proceedings of the 19th ACM
Symposium on Operating System Principles, October
2003.

[6] Ludmila Cherkasova and Jangwon Lee. FastReplica: Ef-
ficient Large File Distribution within Content Delivery
Networks. In 4th USENIX Symposium on Internet Tech-
nologies and Systems, March 2003.

[7] Frank Dabek, Jinyang Li, Emil Sit, Frans Kaashoek,
Robert Morris, and Chuck Blake. Designing a dht for
low latency and high throughput. In Proceedings of the
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI), San Francisco, March 2004.

[8] Christos Gkantsidis and Pablo Rodriguez Rodriguez. Net-
work Coding for Large Scale Content Distribution. In
Proceedings of IEEE Infocom, 2005.

[9] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and
Hui Zhang. Enabling Conferencing Applications on the
Internet using an Overlay Multicast Architecture. In Pro-
ceedings of ACM SIGCOMM, August 2001.

[10] John Jannotti, David K. Gifford, Kirk L. Johnson,
M. Frans Kaashoek, and Jr. James W. O’Toole. Over-
cast: Reliable Multicasting with an Overlay Network. In
Proceedings of Operating Systems Design and Implemen-
tation (OSDI), October 2000.

[11] Dina Katabi, Mark Handley, and Charles Rohrs. Inter-
net congestion control for high bandwidth-delay product
networks. In Proceedings of ACM SIGCOMM, August
2002.

[12] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, Abhi-
jeet Bhirud, and Amin Vahdat. Using Random Subsets to
Build Scalable Network Services. In Proceedings of the
USENIX Symposium on Internet Technologies and Sys-
tems, March 2003.

[13] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and
Amin Vahdat. Bullet: High Bandwidth Data Dissemina-
tion Using and Overlay Mesh. In Proceedings of the 19th
ACM Symposium on Operating System Principles, Octo-
ber 2003.

[14] Maxwell N. Krohn, Michael J. Freedman, and David
Mazieres. On-the-Fly Verification of Rateless Erasure
Codes for Efficient Content Distribution. In Proceedings
of the IEEE Symposium on Security and Privacy, Oak-
land, CA, 2004.

[15] Michael Luby. LT Codes. In In The 43rd Annual IEEE
Symposium on Foundations of Computer Science, 2002.

[16] Michael G. Luby, Michael Mitzenmacher, M. Amin
Shokrollahi, Daniel A. Spielman, and Volker Stemann.
Practical Loss-Resilient Codes. In Proceedings of the
29th Annual ACM Symposium on the Theory of Comput-
ing (STOC ’97), pages 150–159, New York, May 1997.
Association for Computing Machinery.

[17] Petar Maymounkov and David Mazieres. Rateless codes
and big downloads. In Proceedings of the Second Inter-
national Peer to Peer Symposium (IPTPS), March 2003.

[18] Venkata N. Padmanabhan, Helen J. Wang, and Philip A.
Chou. Resilient Peer-to-Peer Streaming. In Proceedings
of the 11th ICNP, Atlanta, Georgia, USA, 2003.

[19] KyoungSoo Park and Vivek S. Pai. Deploying large file
transfer on an http content distribution network. In Pro-
ceedings of the First Workshop on Real, Large Distributed
Systems (WORLDS ’04), 2004.

[20] Larry Peterson, Tom Anderson, David Culler, and Timo-
thy Roscoe. A Blueprint for Introducing Disruptive Tech-
nology into the Internet. In Proceedings of ACM HotNets-
I, October 2002.

[21] Pinger site-by-month history table. http://www-
iepm.slac.stanford.edu/cgi-wrap/pingtable.pl.

[22] Adolfo Rodriguez, Charles Killian, Sooraj Bhat, Dejan
Kostić, and Amin Vahdat. MACEDON: Methodology for
Automatically Creating, Evaluating, and Designing Over-
lay Networks. In Proceedings of the USENIX/ACM Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), San Francisco, March 2004.

[23] Antony Rowstron and Peter Druschel. Pastry: Scalable,
Distributed Object Location and Routing for Large-scale
Peer-to-Peer Systems. In Middleware’2001, November
2001.

[24] Antony Rowstron, Anne-Marie Kermarrec, Miguel Cas-
tro, and Peter Druschel. SCRIBE: The Design of a Large-
scale Event Notification Infrastructure. In Third Inter-
national Workshop on Networked Group Communication,
November 2001.

[25] Rob Sherwood, Ryan Braud, and Bobby Bhattacharjee.
Slurpie: A Cooperative Bulk Data Transfer Protocol. In
Proceedings of IEEE INFOCOM, 2004.

[26] Alex C. Snoeren, Kenneth Conley, and David K. Gifford.
Mesh-Based Content Routing Using XML. In Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), October 2001.

[27] Andrew Tridgell. Efficient Algorithms for Sorting and
Synchronization. PhD thesis, 1999.

[28] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahade-
van, Dejan Kostić, Jeff Chase, and David Becker. Scal-
ability and Accuracy in a Large-Scale Network Emula-
tor. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation (OSDI), December
2002.

[29] Anthony Young, Jiang Chen, Zheng Ma, Arvind Krishna-
murthy, Larry Peterson, and Randolph Y. Wang. Overlay
mesh construction using interleaved spanning trees. In
Proceedings of IEEE INFOCOM, 2004.

