
Handling Very Large Numbers Of Messages In
Distributed Hash Tables

Fabius Klemm, Jean-Yves Le Boudec, Dejan Kostić, and Karl Aberer
School of Computer and Communication Sciences

Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

Abstract—The principal service of Distributed Hash Tables
(DHTs) is route(id, data), which sends data to a peer responsible
for id, using typically O(log(# of peers)) overlay hops. Certain
applications like peer-to-peer information retrieval generate bil-
lions of small messages that are concurrently inserted into a DHT.
These applications can generate messages faster than the DHT
can process them. To support such demanding applications, a
DHT needs a congestion control mechanism to efficiently handle
high loads of messages. In this paper we provide an extended
study on congestion control for DHTs: we present a theoretical
analysis that demonstrates that congestion control for DHTs is
absolutely necessary for applications that provide elastic traffic.
We then present a new congestion control algorithm for DHTs.
We provide extensive live evaluations in a ModelNet cluster and
the PlanetLab test bed, which show that our algorithm is nearly
loss-free, fair, and provides low lookup times and high throughput
under cross-load.

I. INTRODUCTION

Distributed Hash Tables (DHTs), such as [1], [13], [14],
[16], provide a scalable mechanism to map ids from a common
id space to physical machines. Each peer in the network is
responsible for a subset of ids. Given an id, a DHT can route
any data value v to a peer responsible for the id. Depending on
the application, v can be a lookup, insert, update, delete, etc.
request. With n number of peers in the system, the expected
cost of such a request is O(log n) overlay hops when each
peer maintains a routing table of size O(log n).

There are two basic mechanisms for resolving a request:
with recursive routing, when a peer pr receives from a
neighbor pa a message1 for idx, pr will, if it is not responsible
for idx, forward the message to a neighbor selected from its
routing table. In the case of iterative routing, on the contrary,
pr will return the address of the next hop back to pa instead of
forwarding the message. pa then contacts the next hop directly.
In this paper, we focus on recursive routing.

Initially, DHTs have been developed as efficient and scalable
replacement for Gnutella file-sharing networks. However, in
recent years, new demanding applications have been proposed
on top of DHTs, such as P2P Information Retrieval (P2P-
IR) [17], [18] and P2P Database Management Systems (P2P-
DBMS) [4]. These are examples of applications that generate

The work presented in this paper was carried out in the framework of the
EPFL Center for Global Computing and supported by the Swiss National
Funding Agency OFES as part of the European project NEPOMUK No FP6-
027705.

1We will use the terms request and message interchangeably.

so-called elastic traffic, where the request rate of the appli-
cation adjusts to fill the available capacity of the DHT. In
P2P-IR, for example, indexing a small document collection
requires tens to hundreds of thousands of requests that have
to be processed by a DHT [9]. These new applications can
generate requests faster than a DHT can process them and
therefore require the DHT to have special congestion control
mechanisms to work efficiently.

A. Principles of Congestion Control for DHTs

Congestion control for DHTs is independent of TCP con-
gestion control: TCP takes care of avoiding congestion in the
underlying IP network, whereas DHT congestion control deals
with avoiding overloading peers in the DHT.

Congestion in a DHT happens when a peer receives mes-
sages at a higher rate than it can process them. A cause
of congestion can be that peers insert new messages faster
than the DHT can process them. Skewed traffic patterns and
heterogeneous capacities (CPU, bandwidth) can deteriorate
congestion. The goal of DHT congestion control is to limit
the request rates of peers to available (routing) capacities in
the DHT.

There are two principle mechanisms of dealing with con-
gestion. a) An overloaded peer drops all messages it cannot
process and sources adjust their request rates accordingly. b)
An overloaded peer signals its current processing rate to all
peers that forward messages to it, to avoid that it receives
messages at a faster rate than it can process them. This
mechanism is called back-pressure and does not drop any
messages.

B. Contribution of the Paper

We presented an initial study and small-scale evaluation
of congestion control for DHTs in [7]. We proposed two
congestion control mechanisms: 1) Credit System Congestion
Control (CSCC), which uses mesage loss as congestion indica-
tor and 2) Back-Pressure Congestion Control (BPCC), which
propagates congestion state hop-by-hop in reverse direction to
the message flows in the DHT.

The two mechanisms had the following weaknesses: CSCC
performed well in terms of lookup delay, however, particularly
in the presence of cross-load, the throughput decreased con-
siderably due to an increased number of message loss. BPCC
performed better in terms of throughput in the presence of
cross-load. However, there is an inherent risk of deadlock

using back-pressure congestion control if there are cycles
in the buffer waiting graph [10], [15], which cannot be
completely excluded in a highly decentralized, uncontrolled
P2P environment. Furthermore, BPCC exhibited high lookup
delays.

In this paper, we propose a new congestion control algo-
rithm to remedy these problems. It uses marking of messages
instead of loss to detect an onset of congestion. Live evaluation
in a controlled emulation environment shows that it clearly
outperforms the two initial algorithms in terms of lookup
delay, throughput, fairness, and robustness. Furthermore, we
provide a theoretic analysis of a DHT under high load and
show that without congestion control, a DHT can suffer a
congestion collapse. We also evaluate our new congestion
control algorithm in the PlanetLab test bed.

C. Organization

After discussing related work in section II, we provide, in
section III, an analysis of the behavior of a DHT under high
load. In section IV, we present our new congestion control
algorithm for DHTs. In section V, we provide live evaluation
in a ModelNet cluster and using the PlanetLab test bed. We
end with a discussion (section VI) and conclusions (section
VII).

II. RELATED WORK

Dabek et al. [3] present DHash++ and the Striped Transport
Protocol (STP). The authors show experimental results for
single-client fetch operations using STP for iterative routing
and TCP back-pressure for recursive routing.

In contrast to [3], our DHT usage scenario is different as
we consider routing a very large number of small messages as
the main load (such as created by P2P-Information Retrieval
or P2P-Database Management Systems applications). In such
a scenario, all peers permanently generate new requests, which
leads to a constant message flow in the DHT. Under such high-
load conditions, there is a risk of deadlock when recursive
routing is used in combination with TCP back-pressure as
we show in [7]. Furthermore, iterative routing has the disad-
vantage that each peer performs very short interactions with
many different peers in the network. For these interactions, it
is difficult to get good RTT estimates, which are necessary to
schedule a possible retransmission as well as to detect failed
peers. Virtual coordinates can help estimating RTTs, however,
they become imprecise in the case of network congestion and
with varying peer capacities (e.g. available CPU).

For communication between two peers, [20] propose a re-
implementation of TCP using UDP. However, they do not
specify how congestion in the overlay network is avoided.
Most DHT proposals so far were designed for low load, where
congestion is not an issue.

Congestion control in DHTs is orthogonal to load balancing
mechanisms that have been proposed for P2P systems, e.g.
[12], which reduces the imbalance of data items stored at
peers. These mechanisms cannot avoid congestion in the DHT
caused by routing messages.

Further work on congestion control for P2P systems can be
found in the area of component-based transport protocols [2]
and multicast overlay networks [19].

III. ANALYZING CONGESTION COLLAPSE

In this section, we provide an analysis of the throughput of a
DHT without congestion control under high load. We shall see
that even in an idealized case, where all peers in the network
have the same capacities, not restricting the rate at which a
peer initiates requests will lead to a congestion collapse.

Let us consider an application in which each peer performs
requests at a rate that is only limited by its own capacity
(i.e. CPU or access link to the network) and without taking
the congestion state of the DHT into account. Our analysis
is for recursive routing. Fresh requests and relayed requests
coming from other peers contend for available capacities in
the P2P system. If the offered traffic of requests exceeds a
peer’s capacity, the peer has to drop requests. In this case
of overload, all offered traffic contending at the bottleneck is
reduced approximately proportionally.

A. Overview

The goal of this analysis is to study the achieved throughput
A of requests in a DHT when each peer initiates new requests
with a given rate x. Each request has a probability p of
being successfully processed at a peer. p = 1 if the peer
is not overloaded, otherwise 0 < p < 1. Whether a peer
is overloaded depends on the load offered to the bottleneck,
which can be the access link or the CPU of a peer. We
therefore have to calculate the total load O offered to the
bottleneck and compare it to a given capacity c, which allows
us then to calculate p and the achieved throughput of requests
A as a function of x. p is a dimensionless number, while x,
O, and A can be measured in messages per second.

B. Definitions

1) Offered Traffic: Each peer initiates requests, which are
routed in the network. To calculate the total offered load O,
we first define offered traffic:

Definition 3.1: oh
d is the offered traffic with final destination

d before taking its hth hop.
As we consider an idealized case, where all peers have the

same capacities, all peers will generate the same traffic. For
this reason, we defined the offered traffic independent of the
source.

For ease of explanation, we first consider a small Chord
[16] topology. However, our analysis is generally valid for any
log n DHT. Figure 1(a) shows the offered traffic generated by
P0.

Each peer has log2n = l (here n = 8 and l = 3) routing
entries, each pointing to a peer (called neighbor) at distance
2i, i = 0...(l − 1). Each peer performs greedy routing, i.e. it
selects the neighbor closest to the searched id when forwarding
a request. P0 generates new requests for the remaining seven
peers in the network. Some of the traffic is relayed by other
peers: o1

7, for example, is the offered traffic at P0 with
destination P7 before the first hop (P0-P4).

P5

P7

P3

P4

P6
P2

P0

P1o
1

1

o
1

2

o
1

3

o
1

4

o
1

5

o
1

6

o
1

7

o
2

5

o
2

7

o
2

6

o
3

7

o
2

3

(a) Offered traffic oh
d generated by

P0.

incoming

traffic

outgoing

traffic

relay traffic

final traffic fresh traffic

relay traffic

application

(b) Incoming and outgoing traffic.

Fig. 1. Traffic flows in a DHT

2) Achieved Throughput: Each peer has a capacity c to
process offered traffic. c depends on a peer’s CPU and on
its access link to the Internet. If the total offered traffic does
not exceed a peer’s capacity, all offered traffic is processed.
Otherwise, a fraction of the offered traffic is dropped. We
define achieved throughput as:

Definition 3.2: ah
d is the achieved throughput with final

destination d after taking its hth hop.
a1
7 ≤ o1

7, for example, is the amount of traffic with
destination P7 after the first hop, i.e. the traffic arriving at
P4.

3) Processing Probability: The fraction of processed traffic
is defined as:

p = min
(
1,

c
O

)
, (1)

where c is the capacity of a peer and O the total offered load,
which we further define in the following subsections. As long
as a peer is not overloaded, i.e. O ≤ c, all offered traffic is
processed, i.e. p = 1, otherwise p < 1. If the offered traffic is
twice as big as the capacity of the peer, for example, then the
processing probability for a message is 0.5.

If the traffic to a destination flows over several hops, only
the fraction that arrives at a peer can be offered on its next
hop:

oh+1
d = ah

d = oh
d · p (2)

C. Models

Each peer has to process incoming and outgoing offered
traffic (cf. figure 1(b)): incoming traffic consists of final
traffic, Ofinal, which is handed to the application, and relay
traffic, Orel, which is forwarded to neighbors. Outgoing traffic
consists of fresh traffic, Ofresh, generated by the application
and relay traffic, Orel. We consider two bottleneck scenarios:

1) Model 1: Upstream Link is the Bottleneck: Many home
PCs have asymmetric Internet access with usually higher
downstream than upstream bandwidth. Therefore, the outgoing
traffic determines the capacity of the peer. However, we also
consider a fraction α (e.g. α = 0.05) of the incoming traffic,
as TCP acknowledgements use some upstream bandwidth. The
offered load to the bottleneck is thus:

OM1 = Ofresh +Orel + α(Ofinal +Orel)

2) Model 2: Peer Processing Capacity is the Bottleneck: If
a peer has enough up- and down-link bandwidth the bottleneck
is the peer’s processing speed (i.e. CPU). We get:

OM2 = Ofresh +Orel +Ofinal

D. Total Offered Load O
We now have to calculate OM1 and OM2 for our DHT to

be able to determine the processing probability p for a given
capacity c using equation 1. We consider the symmetric case,
i.e. all peers initiate uniform random requests at a rate x. Here,
x also includes requests that have to travel zero hops to be
resolved, i.e. the initiating peer is responsible. We shall first
discuss the case for eight peers, then the general case.

1) For Eight Peers: In the case of eight peers x/8 requests
travel zero hops, while 7/8 · x requests have to be routed
through the network to be resolved. The offered load on the
first hop is therefore:

∀d, 0 < d ≤ 7, o1
d = 1/8 · x (3)

We now calculate the total traffic O offered at each peer
using the traffic flows generated by P0 (shown as black arrows
in figure 1(a)). We simplify using eq. 2 and 3:

Fresh traffic is the traffic generated by the application for
all destinations in the DHT before taking its first hop:

Ofresh = o1
1 + o1

2 + o1
3 + o1

4 + o1
5 + o1

6 + o1
7 =

7x

8
Final traffic is achieved traffic to all destinations after its

final hop. It is handed to the application and not further
relayed:

Ofinal = a1
1 + a1

2 + a2
3 + a1

4 + a2
5 + a2

6 + a3
7

=
3x

8
p +

3x

8
p2 +

x

8
p3

Relay traffic is forwarded to the neighbors:

Orel = a1
3 + a1

5 + a1
6 + a1

7 + a2
7 =

4x

8
p +

x

8
p2

Incoming and outgoing traffic can thus be written as:

Oout = Ofresh +Orel =
7x

8
+

4x

8
p +

x

8
p2 (4)

Oin = Ofinal +Orel =
7x

8
p +

4x

8
p2 +

x

8
p3

2) For n Peers: For any log n DHT (such as [1], [16]) with
n = 2l peers, each peer has l = log2 n neighbors (links). The
offered load per peer for all destinations d on the first hop is
thus:

∀d, 0 < d < n, o1
d =

x

n
=

x

2l

We get the following offered loads:
Fresh traffic:

Ofresh =
n∑

d=1

o1
d =

n− 1
n

x (5)

Final traffic, also called achieved throughput A as it rep-
resents all successfully routed requests. Looking at the way
a log n DHT selects the routing entries, we can use Pascal’s
Triangle to calculate the number of peers that are a certain
number of hops away: line 3 in the triangle, for example, is
1, 3, 3, 1, i.e. there is 1 peer 0 hops away, 3 are 1 hop, 3 are
2 hops, and 1 is 3 hops away. With l neighbors there are thus

(
l

h

)
=

l!
h!(l − h)!

destinations that are reached with h hops. On each hop, a
message is relayed with probability p. We thus get:

A = Ofinal =
x

2l

l∑

h=1

(
l

h

)
ph (6)

Notice that h ≥ 1, i.e. we consider only the traffic that has
to be routed in the network. We assume that requests for which
the peer itself is responsible, i.e. h = 0, can be answered with
no cost.

Relay traffic: To determine the relay traffic, we calculate the
total outgoing traffic and subtract the fresh traffic:

Orel = Oout −Ofresh (7)

The total outgoing traffic can be also determined using
Pascal’s Triangle. However, we consider all hops and not just
the final hop as for Ofinal. We thus get:

Oout =
x

2l

l∑

h=1

(
l

h

) h∑

j=1

pj−1 (8)

We demonstrate eq. 8 for l = 3 and observe that we obtain
the expected result as in eq. 4:

Oout =
x

23

3∑

h=1

(
3
h

) h∑

j=1

pj−1

=
x

8
(
3 · 1 + 3 · (1 + p) + 1 · (1 + p + p2)

)

=
x

8
(
7 + 4p + p2

)

E. Example for one Million Peers

We show an example of the achieved throughput A for
growing request rates x for l = 20, i.e. n = 220 ≈ 1 million
peers. Each peer has a capacity of processing c = 120 requests
per second determined by its bottleneck. We consider the two
proposed models M1 (uplink is bottleneck) and M2 (CPU
is bottleneck). We choose α = 5% for M1, i.e. 5% of the
incoming traffic is used by TCP acknowledgements on the
uplink.

Given the eq. 1 and 5 to 8 we can numerically calculate the
processing probability p for a given 2l peers with capacity c
and request rate x (e.g. using Mathematica’s ’solve’ function).
With p and eq. 6 we can calculate Ofinal, i.e. the achieved
throughput A of requests for the DHT.

Figure 2 shows the achieved throughput A. The max.
achieved throughput per peer is reached for xoptM1 = 11.4

request/s for model 1 and xoptM2 = 10.9 request/s for model
2. Once the offered load exceeds xopt, the achieved throughput
drops quickly. This behavior is called a congestion collapse.

 0

 2

 4

 6

 8

 10

 12

 0 10 20 30 40 50 60

ac
hi

ev
ed

 th
ro

ug
hp

ut
 [m

sg
/s

]

request rate per peer [msg/s]

M1, alpha=0.05
M2

Fig. 2. Achieved throughput A vs. request rate per peer x for a DHT with
one million peers for the bottleneck scenarios M1 and M2. The DHT suffers
a congestion collapse once the offered load exceeds a certain rate xopt.

F. Analysis of the Asymptotic Behavior of A
We now look at the asymptotic behavior of the achieved

throughput A for a saturated DHT (i.e. p → 1) and an
extremely overloaded DHT (i.e. p → 0).

We first simplify eq. 5 to 8: using the equations
∑h−1

j=0 pj =
(1−ph)/(1−p),

∑l
h=1

(
l
h

)
ph = (1+p)l−1, and

∑l
h=1

(
l
h

)
=

2l − 1 we get:

Ofresh =
2l − 1

2l
x =

x

2l(p− 1)
(2l − 1)(p− 1)

=
x

2l(p− 1)
(2lp− 2l − p + 1),

Ofinal =
1
2l

x
∑l

h=1

(
l
h

)
ph

=
x

2l

[
(1 + p)l − 1

]

=
x

2l(p− 1)
[
(1 + p)l − 1

]
(p− 1)

=
x

2l(p− 1)
[
(1 + p)lp− (1 + p)l − p + 1

]
,

(9)

Oout =
x

2l

∑l
h=1

(
l
h

) ∑h−1
j=0 pj

=
2l − (1 + p)l

2l(1− p)
x

=
x

2l(p− 1)
[
(1 + p)l − 2l

]
,

Orel = Oout −Ofresh

=
x

2l(p− 1)
[
(1 + p)l − 2l − 2lp + 2l + p− 1

]

=
x

2l(p− 1)
[
(1 + p)l − 2lp + p− 1

]
.

We now calculate the behavior of the achieved throughput
A for processing probability p → 1 and p → 0. We show the

detailed calculations for M1 and provide only the results for
M2. We first simplify OM1:

OM1 = Oout + α(Ofinal +Orel)
=

x

2l(p− 1)

{
(1 + p)l − 2l + α

[
(1 + p)lp− (1 + p)l

− p + 1 + (1 + p)l − 2lp + p− 1
]}

=
x

2l(p− 1)
{
(1 + p)l − 2l + αp

[
(1 + p)l − 2l

]}

=
x

2l(p− 1)
(1 + αp)

[
(1 + p)l − 2l

]
,

We can now distinguish two cases: 1) the network is
saturated, but not overloaded (i.e. p → 1, all traffic is relayed),
and 2) the offered load largely exceeds the peer’s capacities
(i.e. p → 0):

1) The DHT Is Saturated (p → 1): For O ≥ c the network
is saturated or not fully loaded implying p ≤ 1 and O = c

p
(eq. 1). Using l’Hôpital’s rule we calculate O for the saturated
case p → 1.

lim
p→1

OM1 =
x

2l
lim
p→1

d
{
(1 + αp)

[
(1 + p)l − 2l

]}
/d p

=
x

2l
lim
p→1

{
(1 + αp)l(1 + p)l−1

+ α
[
(1 + p)l − 2l

]}

=
x

2
(1 + α)l.

For model 1 we get thus:

x =
2c

(1 + α)l

For model 2 the calculations are similar. We get:

x =
2lc

2l + 2l−1l − 1
2) The Extremely Overloaded DHT (p → 0): The relation
1

1− p
= 1+p+p2+. . ., valid for |p| < 1, allows us to expand

c

x
=

pO
x

into a power series a0 + a1p + a2p
2 + . . . of p and

conversely p into a power series b0 + b1x
−1 + b2x

−2 + . . . of
x−1.

c

x
=

p

2l(p− 1)
(1+αp)

[
(1 + p)l − 2l

]
=

2l − 1
2l

p+a2p
2+. . . ,

p =
2lc

2l − 1
x−1 + b2x

−2 +

We set p into Ofinal (eq. 9) and use

(1 + p)l =
l∑

k=0

(
l

k

)
pk

=
(

l

0

)
p0 +

(
l

1

)
p1 +

(
l

2

)
p2...

= 1 + lp + ...

For model 1 and 2 we get for p → 0:

A = Ofinal =
x

2l

[
1 +

2lc

2l − 1
x−1 − 1

]
=

c

2l − 1

G. Conclusions of the Analysis

We have shown for two scenarios, M1, when the uplink
capacity is the bottleneck and M2, when CPU is the bottleneck,
that a DHT can suffer a congestion collapse if peers increase
their request rates without taking the capacity of the DHT
into account. This analysis was done for log n DHTs. It can
be applied to any DHT by adapting the offered load O and
the achieved throughput A to the specific routing function of
the DHT.

This analysis shows that even in an ideal, symmetric envi-
ronment, a congestion collapse can occur. Our live evaluation
in section V shows a congestion collapse behavior as predicted
by this analysis. In a heterogeneous environment, the capaci-
ties at different peers can vary strongly, which makes the DHT
even more susceptible for congestion. The goal of congestion
control is to limit peer request rates to match the currently
available capacity in the DHT.

IV. CONGESTION CONTROL FOR DHTS USING MARKING

We explained two congestion control strategies in the intro-
duction: 1) congestion control using back-pressure, which is
not suitable for highly uncontrolled P2P environments because
of the risk of deadlock. 2) A strategy using message loss as
signal for congestion, which is also not optimal, as a source
can only react when there is already congestion in the network.

In the following subsections, we introduce congestion con-
trol using marking, which outperforms the first two strategies
as we will demonstrate in the evaluation section V.

1) Behavior of a Queue: On each hop, messages are
queued. We use queues to set congestion feedback in a
message-header field h, in such a way that each peer receives
a fair share of the bottleneck resource without overloading
it. The size of h is one bit, which is unset, i.e. initialized
to ’false’, at the source of the message. h = ’false’ signifies
’no congestion’ and h = ’true’ signifies ’congestion’. Each
peer puts its current request rate x in the message header.
Furthermore, each peer maintains a running average sending
rate xavg over the source rates x of the last k messages it has
received. A queue sets h to ’true’ with probability q, which
depends on the average queue size and whether the message
source has a higher or lower rate than the average rate xavg

perceived by the peer.
q is calculated as follows:

s Number of messages in the queue
δ Smoothing value, e.g. 0.9
s̄ Average number of messages in the queue
t Maximum feedback threshold
γ Fairness parameter

s̄ = (1− δ) · s + δ · s̄

q = min

[
s̄

t · (t− s̄)
·
(

x

xavg

)γ

, 1
]

(10)

Eq. 10 consists of two parts: the first part is for congestion
control: the closer the average queue size s̄ gets to the
maximum feedback threshold t, the faster the probability for
negative feedback (i.e. h = ’true’) increases. If s̄ ≥ t, q = 1,
i.e. h is set with a probability equal to one. The maximum
feedback threshold t is chosen to be considerably smaller than
the queue capacity (e.g. t = 20, queue capacity = 200), to
allow for buffering of short message bursts. Furthermore, we
average the queue size s with parameter δ to avoid that a
queue returns negative feedback in case of short variations of
the message arrival rate.

The second part of eq. 10 is for fairness: when the rate
x of a message source is smaller than the average rate xavg

perceived by the peer, the probability of negative feedback
decreases. If x > xavg , q increases, i.e. the source is punished
for taking a larger part of the bottleneck resource than average.
The parameter γ regulates how much fairness should be taken
into account. For γ = 0, fairness is turned off. The higher γ
the stronger a deviation of a source rate from the average rate
is taken into account.

Figure 3 shows how q of eq. 10 changes for different
average queue sizes s̄ with γ = 4. It shows q for three sources,
one that is 25% higher than xavg , one 25% lower, and one that
equals xavg .

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

pr
ob

.(m
ar

ke
d)

queue size

Probability of marking, gamma = 4

x = 1.25 * x_avg
x = x_avg

x = 0.75 * x_avg

Fig. 3. Average queue size s̄ vs. probability q of giving negative feedback
for different source rate - average rate ratios with threshold t = 20.

Once h is set, it will never be unset on the path to the
destination of the message. The destination copies h into an
overlay-acknowledgement, which is returned to the source,
either using UDP or by routing in the DHT. The source will
behave as explained in the following subsection.

2) Behavior of a Source: A peer receives for each issued
request an overlay-ack with congestion feedback h. For posi-
tive feedback (i.e. h = ’false’, no congestion), a peer increases
its rate x as follows:

x := x +
c+

x

c+ is a small positive constant (e.g. 2) that determines the
aggressiveness of a source to test for extra bandwidth when it
receives positive feedback.

For negative feedback (i.e. h = ’true’, congestion), a peer
decreases its request rate x as follows:

x := x · c−,

where 0 < c− < 1 is a constant (e.g. 0.5). It determines how
strongly a source backs off when receiving negative feedback.

We thus have an additive increase, multiplicative decrease
scheme of changing a peer’s request rate as it is done in TCP.
The choice of c+ and c− depends on the RTT and the routing
capacity of a DHT. As for TCP, these constants have to be fixed
for an expected usage scenario. Making c+ and c− adaptable to
a changing environment has implications on the fair sharing of
bottleneck resources in the DHT. We leave such improvements
as future work.

3) Round Trip Time Estimates: Each peer maintains an RTT
estimate for requests: for each request it measures the time
until the overlay-ack arrives. This RTT estimate is DHT-wide,
i.e. destination-independent, as in large DHTs it is likely that
each request goes to a different peer. Thus, the RTT varies
strongly. If the retransmission timeout for an outstanding
request fires, a peer decreases its rate (as shown in IV-2) and
retransmits the request.

4) Analysis of Marking: We now show that the marking
scheme does avoid a congestion collapse. We assume a very
large network of peers and use the modeling framework of [6].
We first consider model M2 from section III, i.e. peers are CPU
constrained. Let xj be the rate at which a peer j generates
requests. Further, assume that the probability that a peer i
marks a request is a function f(Oi) of the total rate of requests
Oi =

∑
j xjpj,i received by peer i (pj,i is the probability

that a request originated by peer j is relayed by peer i; it is
computed in detail in section III). A direct application of [6],
theorem 3 shows that the rates xi obtained with the marking
scheme maximize the global utility function

∑

i

√
c+

1− c−
arctan

(
xi

√
1− c−

c+

)
−

∑

i

F (
∑

j

xj · pj,i),

(11)
where we define F by F (x) =

∫ x

0
f(u)du. The maximum of

eq. 11 is obtained for xi = x∗, where x∗ is independent of
i, by the symmetry assumption. Further, we can lower bound
x∗ as follows: it is reasonable to assume that the marking
probability f (and therefore F) is negligible except when Oi

is close to ηc, where c is the capacity of a peer and η is a
safety margin factor, e.g. η ≈ 0.80. If, for some i, xi < ηxopt,
we can always increase the utility in eq. 11 as the first term
increases while the second remains 0. Thus the maximum of
eq. 11 is reached for xi ≥ ηxopt and thus

x∗ ≥ η · xopt.

In other words, the rate achieved by our marking scheme
in a symmetric network of any size is at worst a fraction η of
the peak rate xopt in figure 2.

For model M1, the reasoning is similar, after replacing pj,i

by the probability that a request issued by peer j is handled
by i, multiplied by (1 + α) for i 6= j (non fresh traffic).

V. EXPERIMENTAL RESULTS

In this section, we present extensive experimental results.
We implemented a DHT in Java to test the performance of
our congestion control mechanism. We choose the routing en-
tries in a Chord-like fashion. Requests are routed recursively.
Overlay-acknowledgements are returned in a UDP message.

We evaluate the two algorithms in [7], i.e. ’back-pressure’
and congestion control using lost packets as congestion indica-
tion (’loss’), as well as the new algorithm introduced in section
IV, which uses marking as congestion indication (’marking’).

A. Environment

We present a live evaluation of our prototype in a ModelNet2

cluster and in the PlanetLab3 test bed. The ModelNet cluster
consists of 21 dual 3.4 GHz Xeon processors with 2 GB
RAM, 1 GBit LAN. We use ModelNet because it allows
us to test our prototype in an environment with Internet-like
behavior. Each peer client runs in a virtual node. Several
virtual nodes are hosted on one physical machine. All IP
packets are routed through a ModelNet core, which applies
the network characteristics, such as the bandwidth, delay, and
loss between virtual nodes. The advantage of ModelNet is that
live experiments can be repeated with the exact same network
characteristics, which makes it possible to compare different
algorithms.

B. Demonstration of a Congestion Collapse

The following experiments are performed in the ModelNet
cluster with 128 peers. Each peer has 600 kbps available
bandwidth and there is a 20 ms delay between any two peers.
The goal is to demonstrate the behavior of a DHT with and
without congestion control.

We first disable congestion control. All peers perform
requests at a constant rate x and we measure the achieved
throughput of successful requests. We repeat this experiment
fixing x to values between 5 and 80 requests per peer per
second (figure 4). Without congestion control, the achieved
throughput increases as long as the capacity of the DHT is not
reached. Once the peers perform requests faster then the DHT
can handle, (at ∼65 request/s per peer), we enter a congestion
collapse state and the achieved throughput drops for increasing
x.

We repeat the experiment without limiting x but enabling
one of the congestion control mechanisms, either ’back-
pressure’, ’loss’, or ’marking’. All three algorithms success-
fully prevent a congestion collapse and limit the request rate
of the application (i.e. the offered load) at 65-70 request/s.
With 128 peers, the global request rate of the DHT is thus
∼8300 request/s.

2http://modelnet.ucsd.edu/
3www.planet-lab.org

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80

ac
hi

ev
ed

 th
ro

ug
hp

ut
 [r

eq
ue

st
/s

]

offered load [request/s]

achieved throughput [request/s]

bp
marking

loss

no congestion control
loss

marking
back-pressure (bp)

Fig. 4. Achieved throughput of requests for increasing offered load. No
congestion control leads to a collapse once a rate of ∼70 requests per second
is reached. The congestion control algorithms ’back-pressure’, ’loss’, and
’marking’ limit the rate between 65 and 70 request/s.

C. Performance of Different Congestion Control Strategies
with Cross-Load

We now evaluate the performance of the three different
congestion control strategies in an environment with cross-
load. We simulate cross-load by letting peers stop relaying
messages for short periods of time. Cross-load is likely to
appear when a peer client runs on a PC on which other
applications are running. Cross-load can also be seen as delay
caused by stale routing entries when a peer has to stop relaying
messages to replace a stale entry. We selected cross-load, i.e.
the intervals when a peer stops forwarding, to be exponentially
distributed with an average of 500 ms.

The following experiments are in the ModelNet cluster with
128 peers, with access link capacities and delays varying be-
tween 600-1000 kbps and 5-15 ms (both randomly assigned).

Figure 5 shows several performance characteristics for in-
creasing cross-load. A cross-load of e.g. 5% means that the
peer pauses sending messages on average 5% of the time.

Figure 5(a) shows the achieved throughput of requests
per peer per second. The throughput decreases for all three
strategies, however, ’marking’ clearly outperforms ’loss’ when
cross-load increases.

Figure 5(b) shows the % of retransmitted requests: for
’back-pressure’ there are zero retransmissions as peers never
drop messages. ’marking’ shows also very little retransmis-
sions (less than 0.2%) as it successfully prevents that queues
overflow. ’loss’ clearly suffers under heavy cross-load and
requires many retransmissions caused by an increased number
of dropped messages.

Figure 5(c) shows that the delay to resolve a request is
considerably higher for ’back-pressure’ than for the other two
congestion control strategies. The reason for the delay-increase
with ’back-pressure’ is the high number of outstanding re-
quests (i.e. requests that are buffered in the network) as shown
in figure 5(d).

Overall, we observe a considerable performance improve-
ment in terms of throughput and delay with ’marking’. Fur-
thermore, as already discussed in the introduction, ’back-
pressure’ does not classify for distributed and uncontrolled

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8

ac
hi

ev
ed

 th
ro

ug
hp

ut
 [r

eq
ue

st
/s

]

cross-load in %

achieved throughput [request/s]

marking
back-pressure

loss

(a) Congestion control using ’marking’ clearly outperforms congestion
control using ’loss’ in the presence of heavy cross-load.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

re
tra

ns
m

is
si

on
s

pe
r p

ee
r i

n
%

cross-load in %

retransmissions per peer in %

loss
marking

back-pressure

(b) Congestion control using ’marking’ needs almost zero retransmis-
sions.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5 6 7 8

av
g.

 lo
ok

up
 d

el
ay

 [s
]

cross-load in %

avg. lookup delay [s]

back-pressure
loss

marking

(c) ’Back-pressure’ suffers high lookup delays.

 0

 20

 40

 60

 80

 100

 120

 140

 0 1 2 3 4 5 6 7 8

av
g.

 n
o.

 o
f o

ut
st

an
di

ng
 re

qu
es

ts

cross-load in %

avg. no. of outstanding requests

back-pressure
marking

loss

(d) The number of outstanding messages is considerably higher with
’back-pressure’.

Fig. 5. Performance of congestion control using ’back pressure’, ’loss’, and ’marking’ for increasing cross-load.

P2P environments as there is a risk of deadlock under heavy
load when routing tables are not correct.

D. Fairness

The congestion control strategy ’marking’ has the additional
advantage that it supports fairness as presented in section IV-1.
In a setup as presented in the previous subsection and choosing
γ = 16, we were able to decrease the mean deviation of
request rates among all peers by 40% compared to ’marking’
without fairness (i.e. γ = 0).

E. PlanetLab Experiments

We performed experiments in PlanetLab to test our conges-
tion control mechanism using ’marking’ in a demanding en-
vironment. PlanetLab machines are heavily overloaded (CPU
load averages vary between 2 and 30). In addition, the avail-
able bandwidth between different machines varies strongly.
We thus have a scenario that is both CPU and bandwidth
constrained. This PlanetLab experiment serves as a proof-of-
concept of our DHT implementation. The following test runs
with 64 peers, each peer on a separate machine. We chose 64
machines with relatively stable performance distributed around
the world. All peers constantly perform requests for random
ids using ’marking’ as congestion control mechanism. Replies
are routed back in the DHT as we experienced high loss rates

with UDP. Figure 6 shows the average rate per peer over a
period of over 4 hours: it varies around 3.5 requests per second
per peer. In total, all peers together perform thus roughly 3.3
million requests. Notice that for this experiment we do not
use proximity neighbor selection, which could increase the
throughput.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250

ra
te

 [r
eq

ue
st

/s
]

time [min]

avg. rate

Fig. 6. Average request rate per peer per second in PlanetLab

VI. DISCUSSION

Congestion control in DHTs using marking has similarities
with TCP congestion control and proposed extensions using

explicit congestion notifications [11]. The most important dif-
ference is that in TCP congestion control, the communication
is only between two entities. In a DHT, each peer commu-
nicates with many other peers in the network depending on
request destinations. In a large DHT, it is likely that each feed-
back that a peer receives with an overlay-acknowledgement
is returned by different peer. Thus, RTTs vary strongly. In
addition, guaranteeing in-order request delivery and detecting
duplicate requests in a DHT requires to keep state of size O(n)
and is thus not supported by DHTs.

Fairness in traditional TCP assumes that all packets of a
connection take the same IP route. In a DHT, each request
is likely to travel a different path. Therefore, DHTs require
a different mechanism for fairness, which we presented in
section IV-1.

We presented experimental results using a Chord-like rout-
ing topology. Experiments of all three congestion control
strategies in tree- and randomized small-world DHT topologies
showed results that are comparable to those presented in this
paper.

The proposed congestion control and fairness strategies
are susceptible to greedy peers in the network that ignore
congestion feedback. A similar problem also exists in TCP/IP.
Strategies to detect such peers are outside the scope of this
paper.

Congestion control forces sources to slow down to the
bottleneck capacity in the DHT. Slow peers in the network can
thus considerably reduce the throughput of the whole DHT.
Adaptive routing around such bottlenecks (cf. [8]) would be a
suitable mechanism to increase the throughput of a DHT. Such
mechanisms (as well as other load-balancing mechanisms)
are orthogonal to congestion control: given a routing scheme,
congestion control regulates the message flows in a DHT to
avoid a congestion collapse and to get as close as possible to
the maximal throughput. This maximal throughput can also
vary considerably in time as it depends on the available CPU
and bandwidth.

Mechanisms like XCP [5], where the bottleneck specifies
the exact sending rate for each flow passing through it,
cannot be applied to DHTs. Different peers can have different
(unknown) fractions of their requests traversing the bottleneck
peer. Specifying the fair share for each peer that is using
the bottleneck peer would require to keep state for all flows
traversing the bottleneck, which does not scale.

VII. CONCLUSIONS

In this paper, we have provided an extensive study about
congestion control for DHTs. We have demonstrated in analy-
sis that congestion control in DHTs is essential for applications
that send very large numbers of small messages, such as P2P-
IR or P2P-DBMS. We have presented a new congestion control
strategy that achieves high throughput and low delays in the
presence of heavy cross-load. Extensive experiments with a
real DHT implementation in a ModelNet cluster and in the
PlanetLab test bed show that our mechanism works and can
sustain high loads.

Future work includes a comparison of congestion control
mechanisms for iterative and recursive routing.

REFERENCES

[1] K. Aberer. P-grid: A self-organizing access structure for p2p information
systems. In CoopIS, pages 179–194, 2001.

[2] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and T. Roscoe. Finally,
a Use for Componentized Transport Protocols. In Proceedings of the
Fourth ACM Workshop on Hot Topics in Networks (HotNets-IV), 2005.

[3] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris.
Designing a dht for low latency and high throughput. In NSDI, pages
85–98, 2004.

[4] R. Huebsch, B. N. Chun, J. M. Hellerstein, B. T. Loo, P. Maniatis,
T. Roscoe, S. Shenker, I. Stoica, and A. R. Yumerefendi. The architecture
of pier: an internet-scale query processor. In CIDR, pages 28–43, 2005.

[5] D. Katabi, M. Handley, and C. E. Rohrs. Congestion control for high
bandwidth-delay product networks. In SIGCOMM, pages 89–102, 2002.

[6] F. Kelly. Mathematical modelling of the internet. In Mathematics
Unlimited – 2001 and Beyond, pages 685–702. 2001.

[7] F. Klemm, J.-Y. Le Boudec, and K. Aberer. Congestion control for
distributed hash tables. In The 5th IEEE International Symposium on
Network Computing and Applications (IEEE NCA06), 2006.

[8] F. Klemm, J.-Y. Le Boudec, D. Kostic, and K. Aberer. Improving the
throughput of distributed hash tables using congestion-aware routing. In
International Workshop on Peer-to-Peer Systems (IPTPS), 2007.

[9] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek, D. R. Karger, and
R. Morris. On the feasibility of peer-to-peer web indexing and search.
In IPTPS, pages 207–215, 2003.

[10] G. D. Pifarré, L. Gravano, G. Denicolay, and J. L. C. Sanz. Adaptive
deadlock- and livelock-free routing in the hypercube network. IEEE
Trans. Parallel Distrib. Syst., 5(11):1121–1139, 1994.

[11] K. Ramakrishnan and S. Floyd. A proposal to add explicit congestion
notification (ecn) to ip, 1999.

[12] A. Rao, K. Lakshminarayanan, S. Surana, R. M. Karp, and I. Stoica.
Load balancing in structured p2p systems. In IPTPS, pages 68–79, 2003.

[13] S. Ratnasamy, P. Francis, M. Handley, R. M. Karp, and S. Shenker. A
scalable content-addressable network. In SIGCOMM, pages 161–172,
2001.

[14] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems. In
Middleware, pages 329–350, 2001.

[15] L. Schwiebert and D. N. Jayasimha. A universal proof technique for
deadlock-free routing in interconnection networks. In SPAA, pages 175–
184, 1995.

[16] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications.
In SIGCOMM, pages 149–160, 2001.

[17] C. Tang and S. Dwarkadas. Hybrid global-local indexing for efficient
peer-to-peer information retrieval. In NSDI, pages 211–224, 2004.

[18] C. Tang, Z. Xu, and S. Dwarkadas. Peer-to-peer information retrieval
using self-organizing semantic overlay networks. In SIGCOMM, pages
175–186, 2003.

[19] G. Urvoy-Keller and E. Biersack. A multicast congestion control
model for overlay networks and its performance. In Networked Group
Communication, pages 141–147, 2002.

[20] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. D. Kubiatowicz. Tapestry: A resilient global-scale overlay for service
deployment. IEEE Journal on Selected Areas in Communications, pages
41–53, 2004.

