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Abstract. In Federated Learning (FL), clients with low computational power
train a common machine model by exchanging parameters via updates instead
of transmitting potentially private data. Federated Dropout (FD) is a technique
that improves the communication efficiency of a FL session by selecting a subset
of model parameters to be updated in each training round. However, compared
to standard FL, FD produces considerably lower accuracy and faces a longer
convergence time. In this chapter, we leverage coding theory to enhance FD by
allowing different sub-models to be used at each client. We also show that by
carefully tuning the server learning rate hyper-parameter, we can achieve higher
training speed while also reaching up to the same final accuracy as the no dropout
case. Evaluations on the EMNIST dataset show that our mechanism achieves
99.6% of the final accuracy of the no dropout case while requiring 2.43× less
bandwidth to achieve this level of accuracy.

Keywords: Federated Learning · Hyper-parameters tuning · Coding Theory

1 Introduction

In recent years, stricter regulations such as GDPR [20] have been introduced to preserve
data privacy for end users; therefore, standard Machine Learning (ML) tasks, which
require collecting information at centralized locations such as data-centers cannot be
implemented without violating users’ privacy. At the same time, the number of mobile
phones has consistently grown and is estimated to reach 8.8 billion in 2026 [10]. For
this reason, Federated Learning (FL) [18] has been proposed to train machine learning
models without collecting private data from users’ devices. In FL, a parameter server
broadcasts a global ML model to low powered devices (clients), which in turn perform
training over their own datasets. The model updates are sent from the clients to the
server, which aggregates them and may start another FL round. Even in case of highly
heterogeneous client datasets, it has been demonstrated that the model converges [17].

FL poses strict requirements both in terms of the amount of bandwidth required for
exchanging models and the computational and memory resources required to perform
training on large models on the clients’ devices. The size of a model could be hundreds
of MB [8]. Clients must download such large models using their available (often het-
erogeneous) bandwidth, use processing and memory resources to train on the model on
their data, and re-transmit the updated models to the FL servers; therefore, optimizing
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the bandwidth and computational overheads of running an FL session has become a
topic of crucial importance.

Splitting a common, global model between clients and training it collaboratively
has become imperative to reduce both memory and computational demands of an FL
session. Federated Dropout (FD) is a technique that holds great promise to decrease the
resource utilization of FL by pruning activations in the neural network, thus decreasing
the number of variables to be exchanged and trained at the device side. Unlike standard
centralized Dropout [24], where different dropped models are used at each training
step, in FD a global model is divided into sub-models which are trained locally and
then merged into an updated global model. Federated Dropout is orthogonal to mes-
sage compression techniques, such as quantization [2] or sparsification [3], which also
mitigate bandwidth overheads but do not reduce the computational power and memory
needed at the client side.

Reaping the benefits of FD is not easy as it entails solving two main challenges:

– Low accuracy. FD learning may result in lower accuracy than traditional FL [7].
Intuitively, partially overlapping sub-models per client may improve performance.
Recently it has been shown that selecting random sub-models for each client de-
vice may lead to better final accuracy [27]. However, it is not clear how sub-models
should be selected, nor which is the orthogonality level which produce the optimal
accuracy. Moreover, merging the sub-models into a new global model is a challeng-
ing task since it depends on their overlapping.

– Slow convergence. Although FD requires less bandwidth per round compared to
traditional (no-dropout) FL, there is no guarantee that FD will converge rapidly. If
FD requires significantly more rounds than FL to achieve high accuracy, then the
promised bandwidth benefits would vanish.

We propose novel techniques to improve the accuracy of FD without losing the
inherent bandwidth savings offered by FD (i.e., by improving convergence speed). To
tackle the above challenges, we explore the following two ideas:

– Applying coding theory for sub-model selection. Building upon the idea of send-
ing different models to different clients during one FD round, we deterministi-
cally compute sub-models and then examine whether they perform better than
random sub-models. We draw inspirations from coding theory (specifically, from
the Code Division Multiple Access (CDMA) problem where orthogonal codes en-
able simultaneous communication channels without interference). We employ Gold
codes [11] and Constant Weight Codes (CWC) [5] as masks to drop units and create
different sub-models. The intuition is that selecting sub-models using these mech-
anisms will produce higher accuracy than random selection.

– Adaptive server learning rate. We experimentally observe that the convergence
speed of an FD session depends on a critical parameter called server learning rate,
which determines how the weight updates from the clients are incorporated into
the trained model. Thanks to the inherent bandwidth savings of FD, we propose
to search for the best server learning rate at the beginning of an FD session. A
key challenge is to avoid consuming all of the bandwidth saved due to FD when
performing this search.
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Based on the above ideas, we design a mechanism called Coded Federated Dropout
(CFD), which we incorporate alongside existing state-of-the-art FL systems, such as
FedAdam [21] and FedAvg [18]. By evaluating on the EMNIST62 dataset, we show that
CFD increases the final accuracy of the trained models while preserving the bandwidth
savings of FD. In summary, our contributions are:

1. We are the first to leverage coding theory to carefully select the sub-models used in
each FL round.

2. We show that the optimal server learning rate in a traditional FL session differs
from that of an FD session.

3. We design a technique to quickly search for the best server learning rate. Our eval-
uation shows that we can identify good learning rates in just hundreds of rounds.

4. We show that CFD with Gold Codes achieves comparable accuracy to no-dropout
FL with 2.43× less bandwidth on the EMNIST dataset.

5. We show that minimizing the “cross-correlation” metric in Gold Codes produces
better final accuracy than maximizing the “minimal distance” metric of CWC codes.

The main system parameters used throughout the rest of the chapter and the related
notation are summarised in Table 5.

2 Background

Federated Learning An FL session is composed of one parameter server and multiple
clients. At the beginning of an FL round, the server broadcasts a common global model
w

(t)
k to a fraction of the clients. At round t, each client k trains for a customizable

number of epochs E and returns the update ∆w
(t)
k from the previously received weights:

ŵ
(t)
k = w

(t)
k − ηl∇wL(w, Dk) (1)

∆w
(t)
k = ŵ

(t)
k −w

(t)
k (2)

where L(w, Dk) is the employed loss function, which depends on the model weights
and the client dataset Dk. When employing Federated Averaging (FAVG, [18]), the
originally proposed aggregation method, the parameter server computes new weights
by averaging the updates and adding them to the previous global model:

w(t+1) = w(t) + η
∑

j∈S(t)

pj∆w
(t)
j (3)

pj =
|Dj |∑

j∈S(t) |Dj |
(4)

For FAVG, η is set to 1.0, whereas it can be different for other aggregation mechanisms.
Federated Dropout One of the major issues of FL is the communication overhead. FD
improves bandwidth efficiency by randomly dropping connections between adjacent
neural network layers. Unlike standard dropout [24], FD is not employed as a regular-
isation tool. Instead, FD keeps a fixed percentage α of activations, thus producing a
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sub-model with a (1 − α)2 parameters fraction of fully connected networks. The sub-
model is trained at the client-side, while the aggregation procedure only involves those
nodes that have been kept. Moreover, the required computational power and memory
at the client are reduced. However, although the benefits in bandwidth efficiency are
remarkable, the same set of weights is trained at each client per round.

In [4], the authors suggest adapting the selection of dropped nodes based on the loss
for each client; however, they state that this approach is unsuitable for FL since it wastes
too much memory at the server. Therefore, they propose an alternative technique which
employs a single sub-model for all clients, which degrades convergence rate and final
accuracy. In contrast to random dropout [27], we propose to use coding theory for mask
selection to enhance the orthogonality of sub-models by producing different dropping
masks for each client. Hence, we allow partially disjoint sub-models per clients per
round to improve both convergence time and final accuracy for the same α.
Code Division Multiple Access Multiple access techniques address the problem of
having multiple users communicate via a shared channel. Time and frequency division
multiple access respectively splits the channel in time and frequency between users. In
contrast, CDMA assigns a different code to each user and allows each of them to use the
whole channel. If the codes are sufficiently orthogonal, the inter-user interference is low
and transmission occurs with negligible error rate. CDMA has been extensively used in
satellite [25] and mobile communication [15],. Gold [11] and Kasami [14] codes are
examples of families of sequences designed for orthogonality.
Adaptive Federated Optimization [21] have proven that using a different learning
rate for each parameter during aggregation can greatly improve FL model convergence.
They propose 3 aggregation methods (FedAdam, FedAdagrad, and FedYogi), which
replaces (3). Here we describe only the FedAdam algorithm, which performs well in all
the datasets:

∆t = β1 ·∆t−1 + (1− β1) ·
∑

j∈S(t)

pj∆w
(t)
j (5)

v(t) = β2 · v(t−1) + (1− β2) ·∆(t)2 (6)

w(t+1) = w(t) + η
∆(t)

√
v(t) + τ

(7)

where β1,β2 and τ are hyper-parameters. The key insight is that training variables which
have been trained less in the previous rounds will improve convergence. For this reason,
vt stores an indication of how much variables have been trained and is used to indepen-
dently scale each component of the next update ∆(t). However, the proposed optimiza-
tion techniques require expensive hyper-parameters tuning and therefore a considerable
amount of time, which might not be available in a FL session.

Other adaptive mechanisms have been proposed to correct the client drift due to the
statistical heterogeneity in the clients datasets. [13] employ variance reduction, but this
requires too much information to be stored server-side. [16] propose a trade-off between
fairness and robustness of the global model.
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Fig. 1. Increasing the server learning rate η to 3.0 is beneficial for random FD with different sub-
models per client, while it is detrimental for the no dropout case.

3 Methodology

This section describes the proposed Coded Federated Dropout (CFD) method which
performs both tuning of the server learning rate η (Sect. 3.1) and the selection of the
sub-models sent to the clients (Sect. 3.2).

3.1 Fast server learning rate adaptation

Similarly to centralized ML, increasing the server learning rate may lead to faster con-
vergence, but further increasing the learning rate causes the objective function to di-
verge [28]. Fig. 1(a) empirically confirms that this is also the case for no-dropout FL
where a high server learning rate of η = 3 exhibits worse convergence than with η = 2.
This result is based on the EMNIST62 dataset with more details in Sect. 4. Interestingly,
Fig. 1(b) shows that in FD with random sub-models increasing the server learning rate
to 3 leads to faster convergence. Moreover, a higher server learning rate in FD produces
less oscillations in the accuracy across rounds compared to the no dropout case. This
shows that the “best” server learning rate for FD may differ from the no-dropout case.

We propose a fast server learning rate adaptation method, which can also be ex-
tended to other parameters. At the beginning of training, we run Algorithm 1, which
requires na adaptation steps. In each step (line 2), multiple FL sessions are launched
in parallel from the same parameter server with different server learning rates H and,
in general, different clients subsets per round. We start our search using three η values
during the first adaptation step (line 1) and reduce it to two server learning rates in the
following adaptation steps (line 14). The goal of this search (lines 4 to 12) is to find
the server learning rate that reaches a preconfigured accuracy target γ (lines 8-9) in the
minimum number of rounds r∗ (line 5). More specifically, in each round r, the server
collects both the gradient update ∆wt

k and the accuracy of the model for each training
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Algorithm 1 Fast server learning rate adaptation
Input: w0, {Dk∀k ∈ {1, ..., T}}
Parameter: γ∗, q, na, η0,∆η
Output: η∗

1: H← {η0, η0 −∆η, η0 +∆η}
2: for s = 0 to na do
3: for η ∈ H parallel do
4: r ← 0
5: while r < r∗ do
6: γt, w(t+1) ← Round({Dk}, w(t))
7: γ ← 1

q
·
∑q−1

i=0 γt−i

8: if γ ≥ γ∗ then
9: r∗ ← r, η∗ ← η

10: wait for parallel search to end; go to line 15
11: end if
12: r ← r + 1
13: end while
14: end for
15: ∆η ← ∆η

2

16: H← {η∗ −∆η, η∗ +∆η}
17: end for

client in the round (line 6). Then, it computes the average of the median training accu-
racy γ in the last q FL rounds (line 7). The median operation is performed in order to
avoid the impact of outliers (i.e., clients with too high or low training accuracies), while
the average operation over the last rounds avoids sudden spikes. If one server learn-
ing rate γ is higher than a predefined threshold γ∗, then we have found a new optimal
server learning rate η∗ = η that requires the new minimum number of rounds r∗ = r
to achieve the target accuracy (lines 8-9). For the next adaptation step, the new tenta-
tive server learning rates H are chosen near η∗ (lines 15-16) and the next adaptation
step is performed. An adaptation step may also end when all the FL sessions produce
r ≥ r∗ (line 5). Worth noting is that the search at lines 3 to 13 can be done in parallel
to improve convergence speed.

This algorithm reduces the number of rounds compared to testing all possible server
learning rates using full FL sessions. In particular, since sessions are aborted when
r ≥ r∗, the overhead introduced by each adaptation step is limited. Assuming the
parallel search is synchronized round-by-round, the additional overhead in number of
rounds of our algorithm is:

3 · r∗0 + 2

na∑
i=1

r∗i − r∗ (8)

where r∗i is the minimum number of rounds at the end of the adaptive step i. The first
term accounts for the first adaptive step, the second terms for the following adaptive
steps, and the third term for the spared training rounds when running the full simulation
with η = η∗.
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Fig. 2. Federated Dropout for masks
cki =[0,1,0,1,1] and cki+1=[1,0,1,1,0] re-
duces the weights to be trained from 25
to 9.

Fig. 3. Gold code generation for two
preferred feedback polynomials. The
output is a set of 25 + 1 = 32 se-
quences of length 25 − 1 = 31.

Algorithm 1 selects the optimal η∗ in terms of number of rounds to reach the target
accuracy. The Round function at line 6 represents the underlying FL mechanism being
used to compute the trained model, for instance, FAVG or FedAdam.

We argue that running full simulations to achieve the same level of granularity takes
T× the number of rounds per simulation, where T is the number of tried server learning
rates. This value is strictly greater than the bound provided by equation (8).

3.2 Coded Federated Dropout

We reduce the size of the model by dropping weights from each layer by associating to
each client k and model layer i in the FL round a binary mask vector cki ∈ RNi . A unit
is dropped or kept when the component ckij is equal to 0 or 1 respectively. For adjacent
fully connected layers (Fig. 2) the dropped weights can be straightforwardly obtained
by eliminating rows and columns corresponding to the dropped units from the previous
and following layer respectively. As in standard FD, we only drop a fraction α of nodes
per layer i, which produces the same model size for all clients. For instance, in Fig. 2 we
have Ni = Ni+1 = 5 and α = 2/5 and therefore only Ni ·Ni+1 ·(1−α)2 = 25 · 9

25 = 9
weights should be transmitted instead of Ni ·Ni+1 = 25.

The problem to be solved is to obtain a matrix Ci per layer i with the following
properties:

– each row of Ci is a codeword cki ∈ RNi ; and
– the Hamming weight (i.e., the number of ones in the codeword) of each row in Ci

is equal to Ni · (1− α); and
– the number of rows in Ci is greater or equal than the number of clients per round M .

We consider 4 methods to compute Ci: (i) same random codeword for each client (base-
line Federated Dropout), (ii) different random codeword for each client (proposed con-
temporaneously by [27]), (iii) Gold sequences, and (iv) CWCs. While the first two
are straightforward, the other two provide different levels of orthogonality between the
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Table 1. Preferred polynomial pairs for Gold codes generation.

Degree Sequence length Polynomial 1 Polynomial 2
5 31 1 + x2 + x5 1 + x2 + x3 + x4 + x5

6 63 1 + x6 1 + x1 + x2 + x5 + x6

7 127 1 + x3 + x7 1 + x1 + x2 + x3 + x7

9 511 1 + x4 + x9 1 + x3 + x4 + x6 + x9

10 1023 1 + x3 + x10 1 + x2 + x3 + x8 + x10

11 2047 1 + x2 + x5 + x8 + x11 1 + x2 + x11

dropped models. Since sub-models are trained independently and then aggregated, hav-
ing partially non overlapping sub-models reduces the impact of heterogeneous updates.

In CFD we exploit the different masks per client. At the beginning of each training
round, we compute one matrix Ci for each layer i. Client k is assigned the k-th row from
each Ci and the correspondent weights are extracted from the global model. If such a
matrix is burdensome to be computed or if it would be the same after the generation
process, then the rows and columns of the matrix are shuffled instead. In that way, the
excess codewords can be employed when the number of rows of Ci is greater than M.

Applying coded masks to neural networks is not straightforward, since it requires
different approaches according to the kind of employed layers. For fully connected lay-
ers, it is sufficient to apply dropout as in Fig. 2. For convolutional layers, we experimen-
tally observed that dropping entire filters rather than individual weights achieves better
performance. Long Short-Term Memory layers [12], which are composed of multiple
gates, require that the same mask is employed for each set of weights.

After each sub-model has been trained, each weight in the global model is updated
by averaging the contribution of each sub-model which contained that weight.

Gold codes Codewords orthogonality may be defined by means of cross-correlation.
The correlation between two real binary sequences u1 and u2 of length Lu is a function
of the shift l:

R(u1, u2, l) =
1

Lu

Lu∑
j=1

u1
j · u2

(j+l)modLu

u1
j , u

2
j ∈ {−1, 1} ∀j = 1, ..., Lu

(9)

Gold codes are generated from two Linear Feedback Shift Registers (LFSR) with
suitable feedback polynomials and initial conditions. The LFSRs produce two m-sequences,
which are then circularly shifted and element-wise xored to produce all the sequences
in the family. The size nLFSR of the LFSR determines the code length 2nLFSR − 1 , the
number of codewords in the set 2nLFSR + 1, and the upper bounds for the maximum
cross-correlation in the set:

max
l

∣∣∣R(ck1
i , ck2

i , l)
∣∣∣ = 2⌊(nLFSR+2)/2⌋ + 1

∀k1, k2 ∈ {1, ...(2nLFSR + 1)} , k1 ̸= k2

(10)
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Algorithm 2 Constant Weight Code Generation
Input: Ni, M , α, tmax

Output: Ci

1: Let t = 0.
2: dmin = Ni, Ci = {}
3: Fi = {f ∈ {0, 1}Ni : wh(f) = (1− α) ·Ni}, f added in lexicographic order
4: Add random codeword from Fi to Ci

5: while t < tmax do
6: Fi = {f ∈ Fi : dh(f, c) ≥ dmin∀c ∈ Ci}
7: if |Fi| ̸= 0 then
8: Add first sequence from Fi to Ci

9: else
10: dmin = dmin − 2, Ci = {}
11: Fi = {f ∈ 0, 1Ni : wh(f) = (1− α) ·Ni}, f added in lexicographic order
12: Add random codeword from Fi to Ci

13: end if
14: if |Ci| = M then
15: return Ci

16: end if
17: end while
18: return Ci

After computing the sequences, we concatenate them as row vectors in matrix Ci, which
will then have 2nLFSR +1 rows and 2nLFSR columns. For our experiments, we employ the
preferred polynomials pairs listed in Table 1. The table also contains the correspondent
length of the generated gold sequences. In order to have a suitable length for the model
layers, we usually pad each resulting sequence with a 0 value after the longest run of
zeros. Also note that Gold sequences with multiple of 4 degrees are not supported.
Fig. 3 provides an example of the LFSR used to generate Gold codes of length 31.

Although Gold codes provide orthogonality, they have constraints on the size of Ci

and α value, which can only be 50% since most Gold sequences are balanced (i.e., Ham-
ming weight 2nLFSR−1 ). Please refer to [22] for details on constructions and properties
of Gold codes and LFSR-generated sequences.

Constant weight codes Another metric is the Hamming distance between two code-
words u1 and u2, which is the number of ones in u1 ⊕ u2:

dh(u
1, u2) =

Lu∑
j=1

u1
j ⊕ u2

j (11)

We provide a method to create a matrix Ci with size M × Ni where, in order to
improve orthogonality, the minimum Hamming distance between rows is maximized.
CWC are a family of non-linear codes where each sequence has a fixed Hamming
weight (i.e., number of ones). CWC are flexible: they can provide sets of codewords
with any cardinality, sequence length, and Hamming weight. We devise a variant of the
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Table 2. Model summary. Total number of parameters is 6,603,710).

Layer Type Output Shape Param # Activation Hyper-parameters

Convolutional 2D (-, 28, 28, 32) 832 ReLU
Num filters: 32
Kernel size: (5,5)
Padding: Same

MaxPooling 2D (-,14,14,32) 0 -
Pool size: (2,2)
Padding: Valid

Convolutional 2D (-, 14, 14, 64) 51264 ReLU
Num filters: 64
Kernel size: (5,5)
Padding: Same

MaxPooling 2D (-,7,7,64) 0 -
Pool size: (2,2)
Padding: Valid

Flatten (-, 3136) 0 -
Dense (-, 2048) 6424576 ReLU Num units: 2048
Dense (-, 62) 127038 - Num units: 62

algorithm from [19] to generate M codewords with length Ni and weight (1− α) ·Ni

by maximizing the minimum distance. Starting from a random codeword, we itera-
tively select new sequences with a fixed distance from the current set. The sequences
are added in lexicographic order. If the final set is not complete (i.e., a set of M se-
quences with weight (1− α) ·Ni and length Ni does not exist for the given minimum
distance), the required minimum distance is decremented and the selection procedure
is performed again. The algorithm is described in 2, where we identify Ci as a set of
codewords instead of a matrix.

4 Evaluation

We run our code in vanilla TensorFlow [1] and Python 3, since the major frameworks
for FL do not support FD. In particular, although TensorFlow Federated [26] allows
FD with the same dropping masks, it does not allow broadcast of different models
to the clients (which we require for CFD). The generation algorithm for CWC was
implemented in MATLAB. Training was performed on the EMNIST dataset [9,6] for
character and digits recognition. We normalize the pixels in each image in the [0, 1]
interval and use a batch size of 10. We provide a description of the employed model
in Table 2, which is model C from [23]. Each client optimizes the sparse categorical
crossentropy loss with the SGD optimizer. We train the model for 500 rounds. We use
four kinds of codes for CFD with dropout fraction α = 0.5: random with same sub-
model for each client (baseline FD), random with different sub-models, Gold and CWC.
We experiment with two different server optimization methods (FAVG and FedAdam)
and perform the fast server learning rate tuning for both of them. The FedAdam hyper-
parameters β1,β2, and τ do not need to be tuned since it has been demonstrated that
default values are usually enough to achieve good convergence [21].



Fast Server Learning Rate Tuning for Coded Federated Dropout 11

Table 3. Selected η values for 10 simulations and different codes and aggregation algorithms.

FedAdam FAVG
Server Learning Rate (Log10)→ -2.25 -2 -1.75 -1.5 0,25 0,5
α :0.0 Fedadam No Dropout 0% 30% 60% 10% 100% 0%
α :0.5 Random Fedadam 0% 20% 30% 50% 0% 100%
α :0.5 CWC FedAdam 0% 10% 40% 50% 0% 100%
α :0.5 Gold FedAdam 0% 0% 80% 20% 0% 100%
α :0.5 Fedadam + Baseline FD 50% 50% 0% 0% 70% 30%
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Fig. 4. The dropout approaches require a higher η in order to reach the minimal number of rounds
for the target accuracy.

The fast server learning rate tuning algorithm achieves consistent optimal η values
across many simulations. We run 10 training sessions for each coded approach with
target accuracy γ∗ = 20/62 (which is 20 times the random accuracy) and showcase
the results in Table 3 (highest probability is in bold). Whereas for FAVG the selected η
is the same for all simulations (except for the baseline FD), FedAdam produces higher
variability. However, the differences between the different selected η∗ amounts to a
maximum of 0.5 in log scale for each code.
The optimal server learning rate in a traditional FL session is greater than that
of an FD session, especially when a different sub-model per client is employed. We
experiment with 10 simulations with our tuning algorithm and keep track of the number
of rounds to reach γ∗ for each experimented η. Fig 4 shows the average number of
rounds for each η for both FedAdam and FAVG and makes evident that the η producing
the minimum number of rounds is greater for the coded approaches compared to the
no dropout. Moreover, although the no dropout case is still the fastest one, the coded
approaches achieve up to 1.5× speedup to reach γ∗ compared to the dropout baseline,
thus improving convergence time.
Our tuning mechanism saves communication resources compared to running full
FL sessions with different values of η. We compute the number of additional rounds
as in Eq. 8 and report the results in Table 4. In FedAdam10, γ∗ is 10 times the random
accuracy (10/62) instead of 20. The overhead is directly dependent on the convergence
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Table 4. Average number of additional rounds for different codes.

No Drop Rand CWC Gold FD
FedAdam20 154.9 262.5 248.6 259.3 456.3

FAVG20 166.4 393.0 383.1 387.9 479.3
FedAdam10 140.7 219.2 225.6 211.9 351.2
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Fig. 5. Average test accuracy of FedAdam and FAVG for 5 simulations with the selected η∗ from
Table 3. Coded Federated Dropout with Gold codes and FedAdam improves convergence rate
and final accuracy compared to random, CWC and baseline FD approaches.

speed of the model. Consequently, the no dropout case requires the least overhead and
the baseline FD the most. Still, the additional number of rounds is much lower than run-
ning multiple full FL sessions. For both FedAdam and FAVG, our tuning algorithm tests
10 η values. Therefore, running full sessions would require 500 · (10 − 1) additional
rounds. We point out that decreasing the accuracy threshold γ∗ to 10/62 notably re-
duces the additional number of rounds (FedAdam10). The best selected η is only sightly
influenced by changing γ∗, thus demonstrating that tuning the threshold value is much
easier than tuning η directly.
Gold codes outperform other FD approaches for FedAdam and achieve 99.6% of
the final accuracy of the no dropout case while saving > 2× bandwidth. Fig. 5
shows the average test accuracy of simulations run with the previously selected η∗ val-
ues. While the benefits of using Gold codes or CWC is negligible in terms of final
accuracy compared to random for FAVG, FedAdam plus Gold codes produces higher
convergence speed. Moreover, Gold FedAdam reaches 99.6 % of the final accuracy of
the no dropout case while saving almost 1−(1−α)2 = 75% of the bandwidth per round.
The best result is achieved by FAVG without dropout (84.1% accuracy) when averaging
over the last 100 rounds, while Gold codes achieve 83.8% for FedAdam, which is the
99.6%. Conversely, CWC does not perform well for FedAdam, achieving even worse
performance than random codes. Regarding the overall bandwidth, we measure the size
of the exchanged sub-models and compute the amount of gigabytes needed to reach a
certain test accuracy. Fig.6 shows the reduction in overall bandwidth when CFD is em-
ployed with the selected η∗ values. Gold codes plus FedAdam reduces the bandwidth
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Fig. 6. Reachable test accuracy for FedAdam and FAVG given the amount of exchanged bytes in
a FL session. Coded Federated Dropout with Gold codes and FedAdam reaches the same level of
final accuracy as no dropout while reducing bandwidth usage by 2.43×.

needed to reach the maximum test accuracy by 2.43× compared to no dropout, while
CFD plus FAVG by 2.01×.
Minimizing cross-correlation instead of maximizing minimal distance provides
greater sub-model orthogonality. Fig. 5 and 6 show that Gold codes always outper-
form CWC. Therefore, codes built by minimizing cross-correlation produce higher final
accuracy and convergence rate than the ones obtained by maximizing the minimum dis-
tance. Nevertheless, optimizing any of the two metrics outperforms the baseline for
federated dropout for both FedAdam and FAVG.

5 Conclusion and future works

We have presented a fast server learning rate tuning algorithm for Federated Dropout
and shown considerable reduction on the number of rounds to assess the optimal η∗.
Moreover, we have shown that convergence rate and final accuracy of models trained
in a FL session are improved when using coding theory to carefully perform Federated
Dropout. Specifically, CFD with Gold sequences paired with an optimization mecha-
nism such as FedAdam can achieve up to the same accuracy of the no dropout case, with
2.43× bandwidth savings. However, Gold codes have specific lengths and Hamming
weights, so they are not flexible enough, while CWC does not improve performance
compared to random dropout. Hence, future work will investigate further sequences
from coding theory for FD.
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Table 5. Adopted notations and principal symbols.

Symbol Description Value
Ni Number of units in model layer i See Tab. 2
T Number of total clients 3400
M Number of clients per round 35
α Dropout fraction for FD 0.5
ηl Client learning rate 0.035
E Training epochs per client 1
η Server learning rate See Sec. 3.1
β1 Momentum parameter for FedAdam 0.90
β2 Momentum parameter for FedAdam 0.99
τ Adaptivity degree for FedAdam 0.001

w(t) Server weights at round t -
w

(t)
k Initial client k weights at round t -

ŵ
(t)
k Final client k weights at round t -

Dk Dataset for client k -
{ξ}(t)k Set of batches for client k at round t -
L(.) Client loss function -
S(t) Set of clients selected at round t -
cki Binary mask for client k and layer i -
ckij Component j of cki -
Ci Codes Matrix per layer i -

nLFSR Size of the LFSR See Tab.1
R(u1, u2, l) Correlation between u1 and u2 for shift l -
dh(u

1, u2) Hamming distance between u1 and u2 -
wh(u) Hamming weight of u -
γ∗ Target accuracy 20

62
or 10

62

γt
k Training accuracy for client k at round t
γt Median training accuracy at round t -
γ Average of γt at round t -
q Rounds number to compute γ -
na Number of adaptation steps 3
η∗ Best server learning rate See Tab.3
∆η Log distance between tentative η values -
∆η0 Initial ∆η 1
H Set of tentative η values -
r Current round number -
r∗ Best round number to reach γ∗ -
r∗i Best round number to reach γ∗ at step i -
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H.B.: Adaptive federated optimization (2020)

22. Sarwate, D., Pursley, M.: Crosscorrelation properties of pseudorandom and related se-
quences. Proceedings of the IEEE 68(5), 593–619 (1980). https://doi.org/10.1109/PROC.
1980.11697

23. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: The all
convolutional net (2015)

24. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: A sim-
ple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958
(Jan 2014)

25. Taaghol, P., Evans, B., Buracchini, E., De Gaudinaro, G., Lee, J.H., Kang, C.G.: Satel-
lite umts/imt2000 w-cdma air interfaces. IEEE Communications Magazine 37(9), 116–126
(1999). https://doi.org/10.1109/35.790970

26. tensorflow.org: Tensorflow federated. https://www.tensorflow.org/federated (2017)
27. Wen, D., Jeon, K.J., Huang, K.: Federated dropout – a simple approach for enabling federated

learning on resource constrained devices (2021)
28. Zeiler, M.D.: Adadelta: An adaptive learning rate method (2012)

https://doi.org/10.1109/PROC.1980.11697
https://doi.org/10.1109/PROC.1980.11697
https://doi.org/10.1109/PROC.1980.11697
https://doi.org/10.1109/PROC.1980.11697
https://doi.org/10.1109/35.790970
https://doi.org/10.1109/35.790970
https://www.tensorflow.org/federated

	Fast Server Learning Rate Tuning for Coded Federated Dropout

