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Abstract

We propose a new approach for developing and de-
ploying distributed systems, in which nodes predict dis-
tributed consequences of their actions, and use this in-
formation to detect and avoid errors. Each node con-
tinuously runs a state exploration algorithm on a re-
cent consistent snapshot of its neighborhood and pre-
dicts possible future violations of specified safety prop-
erties. We describe a new state exploration algorithm,
consequence prediction, which explores causally related
chains of events that lead to property violation.

This paper describes the design and implementation
of this approach, termed CrystalBall. We evaluate Crys-
talBall on RandTree, BulletPrime, Paxos, and Chord
distributed system implementations. We identified new
bugs in mature Mace implementations of three systems.
Furthermore, we show that if the bug is not corrected
during system development, CrystalBall is effective in
steering the execution away from inconsistent states at
runtime.

1 Introduction

Complex distributed protocols and algorithms are used in
enterprise storage systems, distributed databases, large-
scale planetary systems, and sensor networks. Errors
in these protocols translate to denial of service to some
clients, potential loss of data, and monetary losses. The
Internet itself is a large-scale distributed system, and
there are recent proposals [19] to improve its routing re-
liability by further treating routing as a distributed con-
sensus problem [26]. Design and implementation prob-
lems in these protocols have the potential to deny vital
network connectivity to a large fraction of users.

Unfortunately, it is notoriously difficult to develop re-
liable high-performance distributed systems that run over
asynchronous networks. Even if a distributed system is
based on a well-understood distributed algorithm, its im-
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Figure 1:Execution path coverage by a) classic model check-
ing, b) replay-based or live predicate checking, c) CrystalBall
in deep online debugging mode, and d) CrystalBall in execution
steering mode. A triangle represents the state space searched by
the model checker; a full line denotes an execution path of the
system; a dashed line denotes an avoided execution path that
would lead to an inconsistency.

plementation can contain errors arising from complexi-
ties of realistic distributed environments or simply cod-
ing errors [27]. Many of these errors can only manifest
after the system has been running for a long time, has de-
veloped a complex topology, and has experienced a par-
ticular sequence of low-probability events such as node
resets. Consequently, it is difficult to detect such errors
using testing and model checking, and many of such er-
rors remain unfixed after the system is deployed.

We propose to leverage increases in computing power
and bandwidth to make it easier to find errors in dis-
tributed systems, and to increase the resilience of the
deployed systems with respect to any remaining errors.
In our approach, distributed system nodes predict con-
sequences of their actions while the system is running.
Each node runs a state exploration algorithm on a consis-
tent snapshot of its neighborhood and predicts which ac-
tions can lead to violations of user-specified consistency
properties. As Figure 1 illustrates, the ability to detect
future inconsistencies allows us to address the problem



of reliability in distributed systems on two fronts: de-
bugging and resilience.

• Our technique enables deep online debugging be-
cause it explores more states than live runs alone
or model checking from the initial state. For each
state that a running system experiences, our tech-
nique checks many additional states that the system
did not go through, but that it could reach in simi-
lar executions. This approach combines benefits of
distributed debugging and model checking.

• Our technique aids resilience because a node can
modify its behavior to avoid a predicted inconsis-
tency. We call this approachexecution steering.
Execution steering enables nodes to resolve non-
determinism in ways that aim to minimize future
inconsistencies.

To make this approach feasible, we need a fast
state exploration algorithm. We describe a new algo-
rithm, termedconsequence prediction, which is efficient
enough to detect future violations of safety properties in
a running system. Using this approach we identified bugs
in Mace implementations of a random overlay tree, and
the Chord distributed hash table. These implementations
were previously tested as well as model-checked by ex-
haustive state exploration starting from the initial system
state. Our approach therefore enables the developer to
uncover and correct bugs that were not detected using
previous techniques. Moreover, we show that, if a bug is
not detected during system development, our approach is
effective in steering the execution away from erroneous
states, without significantly degrading the performance
of the distributed service.

1.1 Contributions

We summarize the contributions of this paper as follows:

• We introduce the concept of continuously executing
a state space exploration algorithm in parallel with a
deployed distributed system, and introduce an algo-
rithm that produces useful results even under tight
time constraints arising from runtime deployment;

• We describe a mechanism for feeding a consis-
tent snapshot of the neighborhood of a node in a
large-scale distributed system into a running model
checker; the mechanism enables reliable conse-
quence prediction within limited time and band-
width constraints;

• We present execution steering, a technique that en-
ables the system to steer execution away from pos-
sible inconsistencies;

• We describe CrystalBall, the implementation of
our approach on top of the Mace framework [21].
We evaluate CrystalBall on RandTree, Bullet′,
Paxos, and Chord distributed system implementa-
tions. CrystalBall detected several previously un-
known bugs that can cause system nodes to reach
inconsistent states. Moreover, if the developer is not
in a position to fix these bugs, CrystalBall’s execu-
tion steering predicts them in a deployed system and
steers execution away from them, all with an accept-
able impact on the overall system performance.

1.2 Example

We next describe an example of an inconsistency ex-
hibited by a distributed system, then show how Crystal-
Ball predicts and avoids it. The inconsistency appears
in the Mace [21] implementation of the RandTree over-
lay. RandTree implements a random, degree-constrained
overlay tree designed to be resilient to node failures and
network partitions. Trees built by an earlier version of
this protocol serve as a control tree for a number of large-
scale distributed services such as Bullet [23] and Ran-
Sub [24]. In general, trees are used in a variety of mul-
ticast scenarios [3, 7] and data collection/monitoring en-
vironments [17]. Inconsistencies in these environments
translate to denial of service to users, data loss, incon-
sistent measurements, and suboptimal control decisions.
The RandTree implementation was previously manually
debugged both in local- and wide-area settings over a pe-
riod of three years, as well as debugged using an existing
model checking approach [22], but, to our knowledge,
this inconsistency has not been discovered before (see
Section 4 for some of the additional bugs that Crystal-
Ball discovered).
RandTree Topology. Nodes in a RandTree overlay form
a directed tree of bounded degree. Each node maintains
a list of its children and the address of the root. The node
with the numerically smallest IP address acts as the root
of the tree. Each non-root node contains the address of
its parent. Children of the root maintain a sibling list.
Note that, for a given node, its parent, children, and sib-
lings are all distinct nodes. The seemingly simple task
of maintaining a consistent tree topology is complicated
by the requirement for groups of nodes to agree on their
roles (root, parent, child, sibling) across asynchronous
networks, in the face of node failures, and machine slow-
downs.
Joining the Overlay. A nodenj joins the overlay by
issuing a Join request to one of the designated nodes.
If the node receiving the join request is not the root, it
forwards the request to the root. If the root already has
the maximal number of children, it asks one of its chil-
dren to incorporate the node into the overlay. Once the



Safety property: children and siblings are disjoint lists

Figure 2: An inconsistency in a run of RandTree

request reaches a nodenp whose number of children is
less than maximum allowed, nodenp insertsnj as one of
its children, and notifiesnj about a successful join using
a JoinReply message (ifnp is the root, it also notifies its
other children about their new siblingnj using an Up-
dateSibling message).
Example System State. The first row of Figure 2 shows
a state of the system that we encountered by running
RandTree in the ModelNet cluster [43] starting from the
initial state. We examine the local states of nodesn1,
n9, andn13. For each noden we display its neighbor-
hood view as a small graph whose central node isn itself,
marked with a circle. If a node is root and in a “joined”
state, we mark it with a triangle in its own view.

The state in the first row of Figure 2 is formed byn13

joining as the only child ofn9 and thenn1 joining and
assuming the role of the new root withn9 as its only child
(n13 remains as the only child ofn9). Although the fi-
nal state shown in first row of Figure 2 is simple, it takes
13 steps of the distributed system (such as atomic han-
dler executions, including application events) to reach
this state from the initial state.
Scenario Exhibiting Inconsistency. Figure 2 describes
a sequence of actions that leads to a state that violates the
consistency of the tree. We use arrows to represent the
sending and the receiving of some of the relevant mes-
sages. A dashed line separates distinct distributed system
states (for simplicity we skip certain intermediate states
and omit some messages).

The sequence begins by a silent reset of noden13

(such reset can be caused by, for example, a power fail-
ure). After the reset,n13 attempts to join the overlay
again. The rootn1 accepts the join request and addsn13

as its child. Up to this point noden9 received no infor-

mation on actions that followed the reset ofn13, son9

maintainsn13 as its own child. Whenn1 acceptsn13 as
a child, it sends an UpdateSibling message ton9. At this
point,n9 simply insertsn13 into the set of its sibling. As
a result,n13 appears both in the list of children and in
the list of siblings ofn9, which is inconsistent with the
notion of a tree.
Challenges in Finding Inconsistencies. We would
clearly like to avoid inconsistencies such as the one ap-
pearing in Figure 2. Once we have realized the pres-
ence of such inconsistency, we can, for example, mod-
ify the handler for the UpdateSibling message to re-
move the new sibling from the children list. Previously,
researchers had successfully used explicit-state model
checking to identify inconsistencies in distributed sys-
tems [22] and reported a number of safety and liveness
bugs in Mace implementations. However, due to an ex-
ponential explosion of possible states, current techniques
capable of model checking distributed system implemen-
tations take a prohibitively long time to identify inconsis-
tencies, even for seemingly short sequences such as the
ones needed to generate states in Figure 2. For exam-
ple, when we applied the Mace Model Checker’s [22]
exhaustive search to the safety properties of RandTree
starting from the initial state, it failed to identify the in-
consistency in Figure 2 even after running for 17 hours
(on a 3.4-GHz Pentium-4 Xeon that we used for all our
experiments in Section 4). The reason for this long run-
ning time is the large number of states reachable from the
initial state up to the depth at which the bug occurs, all
of which are examined by an exhaustive search.

1.3 CrystalBall Overview

Instead of running the model checker from the initial
state, we propose to execute a model checker concur-
rently with the running distributed system, and contin-
uously feed current system states into the model checker.
When, in our example, the system reaches the state at the
beginning of Figure 2, the model checker will predict the
state at the end of Figure 2 as a possible future inconsis-
tency. In summary, instead of trying to predict all possi-
ble inconsistencies starting from the initial state (which
for complex protocols means never exploring states be-
yond the initialization phase), our model checker predicts
inconsistencies that can occur in a system that has been
running for a significant amount of time in a realistic en-
vironment.

As Figure 1 suggests, compared to the standard model
checking approach, this approach identifies inconsisten-
cies that can occur within much longer system execu-
tions. Compared to simply running the system for a long
time, our approach has two advantages.

1. Our approach systematically covers a large number



of executions that contain low-probability events,
such as node resets that ultimately triggered the in-
consistency in Figure 2. It can take a very long time
for a running system to encounter such a scenario,
which makes testing for possible bugs difficult. Our
technique therefore improves system debugging by
providing a new technique that combines some of
the advantages of testing and static analysis.

2. Our approach identifies inconsistencies before they
actually occur. This is possible because the model
checker can simulate packet transmission in time
shorter than propagation latency, and because it can
simulate timer events in time shorter than than the
actual time delays. This aspect of our approach
opens an entirely new possibility: adapt the behav-
ior of the running system on the fly and avoid an in-
consistency. We call this techniqueexecution steer-
ing. Because it does not rely on a history of past in-
consistencies, execution steering is applicable even
to inconsistencies that were previously never ob-
served in past executions.

Figure 3: An Example execution sequence that avoids
the inconsistency from Figure 2 thanks to execution
steering.

Example of Execution Steering. In our example, a
model checking algorithm running inn1 detects the vi-
olation at the end of Figure 2. Given this knowledge,
execution steering causes noden1 not to respond to the
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Figure 4: High-level overview of CrystalBall

join request ofn13 and to break the TCP connection with
it. Noden13 eventually succeeds joining the random tree
(perhaps after some other nodes have joined first). The
stale information aboutn13 in n9 is removed oncen9

discovers that the stale communication channel withn13

is closed, which occurs the first time whenn9 attempts to
communicate withn13. Figure 3 presents one scenario il-
lustrating this alternate execution sequence. Effectively,
execution steering has exploited the non-determinism
and robustness of the system to choose an alternative ex-
ecution path that does not contain the inconsistency.

2 CrystalBall Design

We next sketch the design of CrystalBall (see [44] for
details). Figure 4 shows the high-level overview of a
CrystalBall-enabled node. We concentrate on distributed
systems implemented as state machines, as this is a
widely-used approach [21, 25, 26, 37, 39].

The state machine interfaces with the outside world
via the runtime module. The runtime receives the mes-
sages coming from the network, demultiplexes them, and
invokes the appropriate state machine handlers. The
runtime also accepts application level messages from
the state machines and manages the appropriate network
connections to deliver them to the target machines. This
module also maintains the timers on behalf of all services
that are running.

The CrystalBall controller contains a checkpoint man-
ager that periodically collects consistent snapshots of a
node’s neighborhood. The controller feeds them to the
model checker, along with a checkpoint of the local state.
The model checker runs the consequence prediction al-
gorithm which checks user- or developer-defined proper-
ties and reports any violation in the form of a sequence
of events that leads to an erroneous state.

CrystalBall can operate in two modes. In thedeep on-
line debugging modethe controller only outputs the in-
formation about the property violation. In theexecution



steering modethe controller examines the report from
the model checker, prepares anevent filterthat can avoid
the erroneous condition, checks the filter’s impact, and
installs it into the runtime if it is deemed to be safe.

2.1 Consistent Neighborhood Snapshots

To check system properties, the model checker requires
a snapshot of the system-wide state. Ideally, every node
would have a consistent, up-to-date checkpoint of ev-
ery other participant’s state. Doing so would give ev-
ery node high confidence in the reports produced by the
model checker. However, given that the nodes could be
spread over a high-latency wide-area network, this goal
is unattainable. In addition, the sheer amount of band-
width required to disseminate checkpoints might be ex-
cessive.

Given these fundamental limitations, we use a solution
that aims for scalability: we apply model checking to a
subsetof all states in a distributed system. We lever-
age the fact that in scalable systems a node typically
communicates with a small subset of other participants
(“neighbors”) and perform model checking only on this
neighborhood. In some distributed hash table implemen-
tations, a node keeps track ofO(log n) other nodes; in
mesh-based content distribution systems nodes commu-
nicate with a constant number of peers; or this number
does not explicitly grow with the size of the system. In a
random overlay tree, a node is typically aware of the root,
its parent, its children, and its siblings. We therefore ar-
range for a node to distribute its state checkpoints to its
neighbors, and we refer to them assnapshot neighbor-
hood. The checkpoint managermaintains checkpoints
and snapshots. Other CrystalBall components can re-
quest an on-demand snapshot to be gathered by invoking
an appropriate call on the checkpoint manager.
Discovering and Managing Snapshot Neighborhoods.
To propagate checkpoints, the checkpoint manager needs
to know the set of a node’s neighbors. This set is depen-
dent upon a particular distributed service. We use two
techniques to provide this list. In the first scheme, we
ask the developer to implement a method that will re-
turn the list of neighbors. The checkpoint manager then
periodically queries the service and updates its snapshot
neighborhood.

Since changing the service code might not always be
possible, our second technique uses a heuristic to deter-
mine the snapshot neighborhood. Specifically, we peri-
odically query the runtime to obtain the list of open con-
nections (for TCP), and recent message recipients (for
UDP). We then cluster connection endpoints according
to the communication times, and selects a sufficiently
large cluster of recent connections.

Enforcing Snapshot Consistency. To avoid false pos-
itives, we ensure that the neighborhood snapshot corre-
sponds to a consistent view of a distributed system at
some point of logical time. There has been a large body
of work in this area, starting with the seminal paper by
Chandy and Lamport [5]. We use one of the recent algo-
rithms for obtaining consistent snapshots [29], in which
the general idea is to collect a set of checkpoints that
do not violate the happens-before relationship [25] es-
tablished by messages sent by the distributed service.

Instead of gathering a global snapshot, a node peri-
odically sends a checkpoint request to the members of
its snapshot neighborhood. Even though nodes receive
checkpoints only from a subset of nodes, all distributed
service and checkpointing messages are instrumented to
carry the checkpoint number (logical clock) and each
neighborhood snapshot is a fragment of a globally con-
sistent snapshot. In particular, a node that receives a mes-
sage with a logical timestamp greater than its own logical
clock takes a forced checkpoint. The node then uses the
forced checkpoint to contribute to the consistent snap-
shot when asked for it.

Node failures are commonplace in distributed systems,
and our algorithm has to deal with them. The check-
point manager proclaims a node to be dead if it experi-
ences a communication error (e.g., a broken TCP con-
nection) with it while collecting a snapshot. An addi-
tional cause for an apparent node failure is a change of
a node’s snapshot neighborhood in the normal course of
operation (e.g., when a node changes parents in the ran-
dom tree). In this case, the node triggers a new snapshot
gather operation.
Checkpoint Content. Although the total footprint of
some services might be very large, this might not nec-
essarily be reflected in checkpoint size. For example,
the Bullet′ [23] file distribution application has non-
negligible total footprint, but the actual file content trans-
ferred in Bullet′ does not play any role in consistency de-
tection. In general, the checkpoint content is given by a
serialization routine. The developer can choose to omit
certain parts of the state from serialized content and re-
construct them if needed at de-serialization time. As a re-
sult, checkpoints are smaller, and the code compensates
the lack of serialized state when a local state machine
is being created from a remote node’s checkpoint in the
model checker. We use a set of well-known techniques
for managing checkpoint storage (quotas) and control-
ling the bandwidth used by checkpoints (bandwidth lim-
its, compression).

2.2 Consequence Prediction Algorithm

The key to enabling fast prediction of future inconsisten-
cies in CrystalBall is our consequence prediction algo-
rithm, presented in Figure 5. For readability, we present



1 proc findConseq(currentState : G, property : (G→ boolean))
2 explored = emptySet(); errors = emptySet();
3 localExplored = emptySet();
4 frontier = emptyQueue();
5 frontier.addLast(currentState);
6 while (!STOPCRITERION)
7 state = frontier.popFirst();
8 if (!property(state))
9 errors.add(state);// predicted inconsistency found

10 explored.add(hash(state));
11 foreach ((n,s)∈ state.L)// node n in local state s
12 // process all network handlers
13 foreach (((s,m),(s’,c))∈ HM where (n,m)∈ state.I)
14 // node n handles message m according to st. machine
15 addNextState(state,n,s,s’,{m},c);
16 // process local actions only for fresh local states
17 if (!localExplored.contains(hash(n,s)))
18 foreach (((s,a),(s’,c))∈ HA)
19 addNextState(state,n,s,s’,{},c);
20 localExplored.add(hash(n,s));
21

22 proc addNextState(state,n,s,s’,c0,c)
23 nextState.L = (state.L\ {(n,s)}) ∪ {(n,s’)};
24 nextState.I = (state.I\ c0)∪ c;
25 if (!explored.contains(hash(nextState)))
26 frontier.addLast(nextState);

Figure 5: Consequence Prediction Algorithm

the algorithm as a refinement of a generic state-space
search. The notation is based on a high-level semantics
of a distributed system, shown in Figure 6. (Our concrete
model checker implementation uses an iterative deep-
ening algorithm which combines memory efficiency of
depth-first search, while favoring the states in the near fu-
ture, as in breadth-first search.) The STOPCRITERION
in Figure 5 in our case is given by time constraints and
external commands to restart the model checker upon the
arrival of a new snapshot.

In Line 8 of Figure 5 the algorithm checks whether the
explored state satisfies the desired safety properties. The
developer can use a simple language [22] that involves
loops, existential and comparison operators, state vari-
ables, and function invocations to specify the properties.
Exploring Independent Chains. We can divide the
actions in a distributed system intoevent chains, where
each chain starts with an application or scheduler event
and continues by triggering network events. We call two
chainsindependentif no event of the first chain changes
state of a node involved in the second chain. Conse-
quence Prediction avoids exploring the interleavings of
independent chains. Therefore, the test in Line 17 of Fig-
ure 5 makes the algorithm re-explore the scheduler and
application events of a node if and only if the previous
events changed the local state of the node. For depen-
dent chains, if a chain event changes local state of a node,
Consequence Prediction therefore explores all other ac-
tive chains which have been initiated from this node.

N − node identifiers
S − node states
M − message contents
N × M − (destination process, message)-pair
C = 2N×M − set of messages with destination
A − local node actions (timers, application calls)

system state : (L, I) ∈ G, G = 2N×S × 2N×M

local node states: L ⊆ N × S (function fromN to S)
in-flight messages (network): I ⊆ N × M

behavior functions for each node :
message handler: HM ⊆ (S × M) × (S × C)
internal action handler: HA ⊆ (S × A) × (S × C)

transition function for distributed system :

node message handler execution:
((s1, m), (s2, c)) ∈ HM

before: (L0 ⊎ {(n, s1)}, I0 ⊎ {(n, m)}) ;

after: (L0 ⊎ {(n, s2)}, I0 ∪ c)

internal node action (timer, application calls):
((s1, a), (s2, c)) ∈ HA

before: (L0 ⊎ {(n, s1)}, I) ;

after: (L0 ⊎ {(n, s2)}, I ∪ c)

Figure 6: A Simple Model of a Distributed System

Note thathash(n, s) in Figure 5 implies that we have
separate tables corresponding to each node for keeping
hashed local states. If a state variable is not necessary
to distinguish two separate states, the user can annotate
the state variable that he or she does not want include
in the hash function, improving the performance of Con-
sequence Prediction. Instead of holding all encountered
hashes, the hash table could be designed as a bounded
cache to fit into the L2 cache or main memory, favor-
ing access speed while admitting the possibility of re-
exploring previously seen states.

Although simple, the idea of removing from the search
actions of nodes with previously seen states eliminates
many (uninteresting) interleavings from search and has
a profound impact on the search depth that the model
checker can reach with a limited time budget. This
change was therefore key to enabling the use of the
model checker at runtime. Knowing that consequence
prediction avoids considering certain states, the question
remains whether the remaining states are sufficient to
make the search useful. Ultimately, the answer to this
question comes from our evaluation (Section 4).

2.3 Execution Steering

CrystalBall’s execution steering mode enables the sys-
tem to avoid entering an erroneous state by steering its



execution path away from predicted inconsistencies. If a
protocol was designed with execution steering in mind,
the runtime system could report a predicted inconsis-
tency as a special programming language exception, and
allow the service to react to the problem using a service-
specific policy. However, to measure the impact on exist-
ing implementations, this paper focuses on generic run-
time mechanisms that do not require the developer to in-
sert exception-handling code.
Event Filters. Recall that a node in our framework op-
erates as a state machine and processes messages, timer
events, and application calls via handlers. Upon noticing
that running a certain handler can lead to an erroneous
state, CrystalBall installs anevent filter, which temporar-
ily blocks the invocation of the state machine handler for
messages from the relevant sender.

The rationale is that a distributed system often con-
tains a large amount of non-determinism that allows it
to proceed even if certain transitions are disabled. For
example, if the offending message is a Join request in
a random tree, ignoring the message can prevent violat-
ing a local state property. The joining nodes can later
retry the procedure with an alternative potential parent
and successfully join the tree. Similarly, if handling a
message causes an equivalent of a race condition man-
ifested as an inconsistency, delaying message handling
allows the system to proceed to the point where handling
the message becomes safe again. Note that state machine
handlers are atomic, so CrystalBall is unlikely to inter-
fere with any existing recovery code.
Point of Intervention. In general, execution steering
can intervene at several points in the execution path. Our
current policy is to steer the execution as early as pos-
sible. For example, if the erroneous execution path in-
volves a node issuing a Join request after resetting, the
system’s first interaction with that node occurs at the
node which receives its join request. If this node dis-
covers the erroneous path, it can install the event filter.
Non-Disruptiveness of Execution Steering. Ideally,
execution steering would always prevent inconsistencies
from occurring, without introducing new inconsistencies
due to a change in behavior. In general, however, guar-
anteeing the absence of inconsistencies is as difficult as
guaranteeing that the entire program is error-free. Crys-
talBall therefore makes execution steering safe in prac-
tice through two mechanisms:

1. Sound Choice of Filters. It is important that
the chosen corrective action does not sacrifice the
soundness of the state machine. Asound filteringis
the one in which the observed sequence of events
after filtering is a subset of possible sequence of
events without filtering. The breaking of a TCP
connection is common in a distributed system using
TCP. Therefore, such distributed systems include

failure-handling code that deals with broken TCP
connections. This makes sending a TCP RST signal
a good candidate for a sound event filter, and is the
filter we choose to use in CrystalBall. In the case
of communication over UDP, the filter simply drops
the UDP packet, which could similarly happen in
normal operation of the network.

2. Exploration of Corrected Executions. Before al-
lowing the event filter to perform an execution steer-
ing action, CrystalBall runs the consequence predic-
tion algorithm to check the effect of the event filter
action on the system. If the consequence prediction
algorithm does not suggest that the filter actions are
safe, CrystalBall does not attempt execution steer-
ing and leaves the system to proceed as usual.

Rechecking Previously Discovered Violations. An
event filter reflects possible future inconsistencies reach-
able from the current state, and leaving an event filter in
place indefinitely could deny service to some distributed
system participants. CrystalBall therefore removes the
filters from the runtime after every model checking run.
However, it is useful to quickly check whether the previ-
ously identified error path can still lead to an erroneous
condition in a new model checking run. This is espe-
cially important given the asynchronous nature of the
model checker relative to the system messages, which
can prevent the model checker from running long enough
to rediscover the problem. To prevent this from happen-
ing, the first step executed by the model checker is to
replay the previously discovered error paths. If the prob-
lem reappears, CrystalBall immediately reinstalls the ap-
propriate filter.
Immediate Safety Check. CrystalBall also supports
immediate safety check, a mechanism that avoids incon-
sistencies that would be caused by executing the current
handler. Such imminent inconsistencies can happen even
in the presence of execution steering because 1) conse-
quence prediction explores states given by only a subset
of all distributed system nodes, and 2) the model checker
runs asynchronously and may not always detect incon-
sistencies in time. The immediate safety check specula-
tively runs the handler, checks the consistency properties
in the resulting state, and prevents actual handler execu-
tion if the resulting state is inconsistent.

We have found that exclusively using immediate
safety check would not be sufficient for avoiding incon-
sistencies. The advantages of installing event filters are:
i) performance benefits of avoiding the bug sooner, e.g.,
reducing unnecessary message transmission, ii) faster re-
action to an error, which implies greater chance of avoid-
ing a “point of no return” after which error avoidance
is impossible, and iii) the node that is supposed to ul-
timately avoid the inconsistency by immediate safety



check might not have all the checkpoints needed to no-
tice the violation; this can result in false negatives (as
shown in Figure 9).
Liveness Issues. It is possible that by applying an event
filter would affect liveness properties of a distributed sys-
tem. In our experience, due to a large amount of non-
determinism (e.g., the node is bootstrapped with a list
of multiple nodes it can join), the system usually finds
a way to make progress. We focus on enforcing safety
properties, and we believe that occasionally sacrificing
liveness is a valid approach. According to a negative re-
sult by Fischer, Lynch, and Paterson [12], it is impossible
to have both in an asynchronous system anyway. (For ex-
ample, the Paxos [26] protocol guarantees safety but not
liveness.)

2.4 Scope of Applicability

CrystalBall does not aim to find all errors; it is rather
designed to find and avoid important errors that can
manifest in real runs of the system. Results in Sec-
tion 4 demonstrate that CrystalBall works well in prac-
tice. Nonetheless, we next discuss the limitations of our
approach and characterize the scenarios in which we be-
lieve CrystalBall to be effective.
Up-to-Date Snapshots. For Consequence Prediction to
produce results relevant for execution steering and imme-
diate safety check, it needs to receive sufficiently many
node checkpoints sufficiently often. (Thanks to snapshot
consistency, this is not a problem for deep online debug-
ging.) We expect the stale snapshots to be less of an issue
with stable properties, e.g., those describing a deadlock
condition [5]. Since the node’s own checkpoint might
be stale (because of enforcing consistent neighborhood
snapshots for checking multi-node properties), immedi-
ate safety check is perhaps more applicable to node-local
properties.

Higher frequency of changes in state variables re-
quires higher frequency of snapshot exchanges. High-
frequency snapshot exchanges in principle lead to: 1)
more frequent model checker restarts (given the difficulty
in building incremental model checking algorithms), and
2) high bandwidth consumption. Among the examples
for which our techniques is appropriate are overlays in
which state changes are infrequent.
Consequence Prediction as a Heuristic. Consequence
Prediction is a heuristic that explores a subset of the
search space. This is an expected limitation of explicit-
state model checking approaches applied to concrete im-
plementations of large software systems. The key ques-
tion in these approaches is directing the search towards
most interesting states. Consequence Prediction uses in-
formation about the nature of the distributed system to
guide the search; the experimental results in Section 4

show that it works well in practice, but we expect that
further enhancements are possible.

3 Implementation Highlights

We built CrystalBall on top of the Mace [21] framework.
Mace allows distributed systems to be specified suc-
cinctly and outputs high-performance C++ code. We im-
plemented our consequence prediction within the Mace
model checker, and run the model checker as a separate
thread that communicates future inconsistencies to the
runtime. Our current implementation of the immediate
safety check executes the handler in a copy of the state
machine’s virtual memory (using fork()), and holds the
transmission of messages until the successful completion
of the consistency check. Upon encountering an incon-
sistency in the copy, the runtime does not execute the
handler in the primary state machine. In case of appli-
cations with high messaging/state change rates in which
the performance of immediate safety check is critical, we
could obtain a state checkpoint [41] before running the
handler and rollback to it in case of an encountered in-
consistency. Another option would be to employ operat-
ing system-level speculation [32].

4 Evaluation

Our experimental evaluation addresses the following
questions:1) Is CrystalBall effective in finding bugs in
live runs? 2) Can any of the bugs found by Crystal-
Ball also be identified by the MaceMC model checker
alone? 3) Is execution steering capable of avoiding in-
consistencies in deployed distributed systems?4) Are the
CrystalBall-induced overheads within acceptable levels?

4.1 Experimental Setup

We conducted our live experiments using ModelNet [43].
ModelNet allows us to run live code in a cluster of
machines, while application packets are subjected to
packet delay, loss, and congestion typical of the Inter-
net. Our cluster consists of 17 older machines with dual
3.4 GHz Pentium-4 Xeons with hyper-threading, 8 ma-
chines with dual 2.33 GHz dual-core Xeon 5140s, and 3
machines with 2.83 GHz Xeon X3360s (for Paxos exper-
iments). Older machines have 2 GB of RAM, while the
newer ones have 4 GB and 8 GB. These machines run
GNU/Linux 2.6.17. One 3.4 GHz Pentium-4 machine
running FreeBSD 4.9 served as the ModelNet packet for-
warder for these experiments. All machines are intercon-
nected with a full-rate 1-Gbps Ethernet switch.

We consider two deployment scenarios. For our large-
scale experiments with deep online debugging, we mul-
tiplex 100 logical end hosts running the distributed ser-



vice across the 20 Linux machines, with 2 participants
running the model checker on 2 different machines. We
run with 6 participants for small-scale debugging exper-
iments, one per machine.

We use a 5,000-node INET [6] topology that we fur-
ther annotate with bandwidth capacities for each link.
The INET topology preserves the power law distribution
of node degrees in the Internet. We keep the latencies
generated by the topology generator; the average net-
work RTT is 130ms. We randomly assign participants
to act as clients connected to one-degree stub nodes in
the topology. We set transit-transit links to be 100 Mbps,
while we set access links to 5 Mbps/1 Mbps inbound-
/outbound bandwidth. To emulate the effects of cross
traffic, we instruct ModelNet to drop packets at random
with a probability chosen uniformly at random between
[0.001,0.005] separately for each link.

4.2 Deep Online Debugging Experience

We have used CrystalBall to find inconsistencies (vio-
lations of safety properties) in two mature implemented
protocols in Mace, namely an overlay tree (RandTree)
and a distributed hash table (Chord [42]). These im-
plementation were not only manually debugged both
in local- and wide-area settings, but were also model
checked using MaceMC [22]. We have also used our
tool to find inconsistencies in Bullet′, a file distribu-
tion system that was originally implemented in MACE-
DON [37], and then ported to Mace. We found 13 new
subtle bugs in these three systems that caused violation
of safety properties.

System Bugs found LOC Mace/C++
RandTree 7 309 / 2000

Chord 3 254 / 2200
Bullet′ 3 2870 / 19628

Table 1: Summary of inconsistencies found for each system
using CrystalBall. LOC stands for lines of code and reflects
both the MACE code size and the generated C++ code size.
The low LOC counts for Mace service implementations are
a result of Mace’s ability to express these services succinctly.
This number does not include the line counts for libraries and
low-level services that services use from the Mace framework.

Table 1 summarizes the inconsistencies that Crystal-
Ball found in RandTree, Chord and Bullet′. Typical
elapsed times (wall clock time) until finding an incon-
sistency in our runs have been from less than an hour up
to a day. This time allowed the system being debugged
to go through complex realistic scenarios.1 CrystalBall

1During this time, the model checker ran concurrently with a nor-
mally executing system. We therefore do not consider this time to be
wasted by the model checker before deployment; rather, it isthe time
consumed by a running system.

identified inconsistencies by running consequence pre-
diction from the current state of the system for up to sev-
eral hundred seconds. To demonstrate their depth and
complexity, we detail four out of 13 inconsistencies we
found in the three services we examined.

4.2.1 Example RandTree Bugs Found

We next discuss bugs we identified in the RandTree over-
lay protocol presented in Section 1.2. We name bugs ac-
cording to the consistency properties that they violate.
Children and Siblings Disjoint. The first safety prop-
erty we considered is that the children and sibling lists
should be disjoint. CrystalBall identified the scenario
from Figure 2 in Section 1.2 that violates this property.
The problem can be corrected by removing the stale in-
formation about children in the handler for the Update-
Sibling message. CrystalBall also identified variations of
this bug that requires changes in other handlers.
Recovery Timer Should Always Run. An important
safety property for RandTree is that the recovery timer
should always be scheduled. This timer periodically
causes the nodes to send Probe messages to the peer list
members with which it does not have direct connection.
It is vital for the tree’s consistency to keep nodes up-to-
date about the global structure of the tree. The property
was written by the authors of [22] but the authors did not
report any violations of it. We believe that our approach
discovered it in part because our experiments considered
more complex join scenarios.

Scenario exhibiting inconsistency.CrystalBall found a
violation of the property in a state where node A joins it-
self, and changes its state to “joined” but does not sched-
ule any timers. Although this does not cause problems
immediately, the inconsistency happens when another
nodeB with smaller identifier tries to join, at which point
A gives up the root position, selectsB as the root, and
addsB it to its peer list. At this pointA has a non-empty
peer list but no running timer.

Possible correction.Keep the timer scheduled even
when a node has an empty peer list.

4.2.2 Example Chord Bug Found

We next describe a violation of a consistency property
in Chord [42], a distributed hash table that provides key-
based routing functionality. Chord and other related dis-
tributed hash tables form a backbone of a large number of
proposed and deployed distributed systems [17, 35, 38].
Chord Topology. Each Chord node is assigned a Chord
id (effectively, a key). Nodes arrange themselves in an
overlay ring where each node keeps pointers to its prede-
cessor and successor. Even in the face of asynchronous
message delivery and node failures, Chord has to main-
tain a ring in which the nodes are ordered according to
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Figure 7:An inconsistency in a run of Chord. NodeC has its
predecessor pointing to itself while its successor list includes
other nodes.

their ids, and each node has a set of “fingers” that enables
it to reach exponentially larger distances on the ring.
Joining the System. To join the Chord ring, a nodeA
first identifies its potential predecessor by querying with
its id. This request is routed to the appropriate nodeP ,
which in turn replies toA. Upon receiving the reply,
A inserts itself betweenP andP ’s successor, and sends
the appropriate messages to its predecessor and succes-
sor nodes to update their pointers. A “stabilize” timer
periodically updates these pointers.
Property: If Successor is Self, So Is Predecessor. If
a predecessor of a nodeA equalsA, then its successor
must also beA (because thenA is the only node in the
ring). This is a safety property of Chord that had been
extensively checked using MaceMC, presumably using
both exhaustive search and random walks.

Scenario exhibiting inconsistency:CrystalBall found
a state where nodeA hasA as a predecessor but has an-
other nodeB as its successor. This violation happens
at depths that are beyond those reachable by exhaustive
search from the initial state. Figure 7 shows the scenario.
During live execution, several nodes join the ring and all
have a consistent view of the ring. Three nodesA, B,
andC are placed consecutively on the ring, i.e.,A is pre-
decessor ofB andB is predecessor ofC. ThenB expe-
riences a node reset and other nodes which have estab-
lished TCP connection withB receive a TCP RST. Upon
receiving this error, nodeA removesB from its internal
data structures. As a consequence, NodeA considersC
as its immediate successor.

Starting from this state, consequence prediction de-
tects the following scenario that leads to violation.C

experiences a node reset, losing all its state.C then tries
to rejoin the ring and sends a FindPred message toA.

Because nodesA andC did not have an established TCP
connection,A does not observe the reset ofC. NodeA

replies toC by a FindPredReply message that showsA’s
successor to beC. Upon receiving this message, nodeC

i) sets its predecessor toA; ii) stores the successor list in-
cluded in the message as its successor list; and iii) sends
an UpdatePred message toA’s successor which, in this
case, isC itself. After sending this message,C receives
a transport error fromA and removesA from all of its
internal structures including the predecessor pointer. In
other words,C ’s predecessor would be unset. Upon re-
ceiving the (loopback) message to itself,C observes that
the predecessor is unset and then sets it to the sender of
the UpdatePred message which isC. Consequently,C
has its predecessor pointing to itself while its successor
list includes other nodes.

Possible corrections.One possibility is for nodes to
avoid sending UpdatePred messages to themselves (this
appears to be a deliberate coding style in Mace Chord).
If we wish to preserve such coding style, we can alterna-
tively place a check after updating a node’s predecessor:
if the successor list includes nodes in addition to itself,
avoid assigning the predecessor pointer to itself.

4.2.3 Example Bullet′ Bug Found

Next, we describe our experience of applying Crystal-
Ball to the Bullet′ [23] file distribution system. The
Bullet′ source sends the blocks of the file to a subset of
nodes in the system; other nodes discover and retrieve
these blocks by explicitly requesting them. Every node
keeps a file map that describes blocks that it currently
has. A node participates in the discovery protocol driven
by RandTree, and peers with other nodes that have the
most disjoint data to offer to it. These peering relation-
ships form the overlay mesh.

Bullet′ is more complex than RandTree, Chord (and
tree-based overlay multicast protocols) because of 1) the
need for senders to keep their receivers up-to-date with
file map information, 2) the block request logic at the re-
ceiver, and 3) the finely-tuned mechanisms for achieving
high throughput under dynamic conditions. The starting
point for our exploration was property 1):
Sender’s File Map and Receivers View of it Should
Be Identical. Every sender keeps a “shadow” file map
for each receiver informing it which are the blocks it
has not told the receiver about. Similarly, a receiver
keeps a file map that describes the blocks available at
the sender. Senders use the shadow file map to compute
“diffs” on-demand for receivers containing information
about blocks that are “new” relative to the last diff.

Senders and receivers communicate over non-
blocking TCP sockets that are under control of MaceTcp-
Transport. This transport queues data on top of the TCP
socket buffer, and refuses new data when its buffer is full.



Scenario exhibiting inconsistency:In a live run last-
ing less than three minutes, CrystalBall quickly identi-
fied a mismatch between a sender’s file map and the re-
ceiver’s view of it. The problem occurs when the diff
cannot be accepted by the underlying transport. The
code then clears the receiver’s shadow file map, which
means that the sender will never try again to inform the
receiver about the blocks containing that diff. Interest-
ingly enough, this bug existed in the original MACE-
DON implementation, but there was an attempt to fix
it by the UCSD researchers working on Mace. The at-
tempted fix consisted of retrying later on to send a diff
to the receiver. Unfortunately, since the programmer left
the code for clearing the shadow file map after a failed
send, all subsequent diff computations will miss the af-
fected blocks.

Possible corrections.Once the inconsistency is identi-
fied, the fix for the bug is easy and involves not clearing
the sender’s file map for the given receiver when a mes-
sage cannot be queued in the underlying transport. The
next successful enqueuing of the diff will then correctly
include the block info.

4.3 Comparison with MaceMC

To establish the baseline for model checking perfor-
mance and effectiveness, we installed our safety prop-
erties in the original version of MaceMC [22]. We then
ran it for the three distributed services for which we iden-
tified safety violations. After 17 hours, exhaustive search
did not identify any of the violations caught by Crystal-
Ball, and reached the depth of only Some of the specific
depths reached by the model checker are as follows 1)
RandTree with 5 nodes: 12 levels, 2) RandTree with 100
nodes: 1 level, 3) Chord with 5 nodes: 14 levels, and
Chord with 100 nodes: 2 levels. This illustrates the limi-
tations of exhaustive search from the initial state.

In another experiment, we additionally employed
random walk feature of MaceMC. Using this setup,
MaceMC identified some of the bugs found by Crystal-
Ball, but it still failed to identify 2 Randtree, 2 Chord, and
3 Bullet′ bugs found by CrystalBall. In Bullet′, MaceMC
found no bugs despite the fact that the search lasted 32
hours. Moreover, even for the bugs found, the long list of
events that lead to a violation (on the order of hundreds)
made it difficult for the programmer to identify the error
(we spent five hours tracing one of the violations involv-
ing 30 steps). Such a long event list is unsuitable for
execution steering, because it describes a low probabil-
ity way of reaching the final erroneous state. In contrast,
CrystalBall identified violations that are close to live ex-
ecutions and therefore more likely to occur in the imme-
diate future.

4.4 Execution Steering Experience

We next evaluate the capability of CrystalBall as a run-
time mechanism for steering execution away from previ-
ously unknown bugs.

4.4.1 RandTree Execution Steering

To estimate the impact of execution steering on de-
ployed systems, we instructed the CrystalBall controller
to check for violations of RandTree safety properties (in-
cluding the one described in Section 4.2.1). We ran a
live churn scenario in which one participant (process in a
cluster) per minute leaves and enters the system on aver-
age, with 25 tree nodes mapped onto 25 physical cluster
machines. Every node was configured to run the model
checker. The experiment ran for 1.4 hours and resulted
in the following data points, which suggest that in prac-
tice the execution steering mechanism is not disruptive
for the behavior of the system.

When CrystalBall is not active, the system goes
through a total of 121 states that contain inconsisten-
cies. When only the immediate safety check but not the
consequence prediction is active, the immediate safety
check engages 325 times, a number that is higher be-
cause blocking a problematic action causes further prob-
lematic actions to appear and be blocked successfully.
Finally, we consider the run in which both execution
steering and the immediate safety check (as a fallback)
are active. Execution steering detects a future inconsis-
tency 480 times, with 65 times concluding that chang-
ing the behavior is unhelpful and 415 times modifying
the behavior of the system. The immediate safety check
fallback engages 160 times. Through a combined action
of execution steering and immediate safety check, Crys-
talBall avoided all inconsistencies, so there were no un-
caught violations (false negatives) in this experiment.

To understand the impact of CrystalBall actions on the
overall system behavior, we measured the time needed
for nodes to join the tree. This allowed us to empirically
address the concern that TCP reset and message block-
ing actions can in principle cause violations of liveness
properties (in this case extending the time nodes need to
join the tree). Our measurements indicated an average
node join times between 0.8 and 0.9 seconds across dif-
ferent experiments, with variance exceeding any differ-
ence between the runs with and without CrystalBall. In
summary, CrystalBall changed system actions 415 times
(2.77% of the total of 14956 actions executed), avoided
all specified inconsistencies, and did not degrade system
performance.
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Figure 8: Scenario that exposes a previously reported Paxos
violation of a safety property (two different values are chosen
in the same instance).

4.4.2 Paxos Execution Steering

Paxos [26] is a well known fault-tolerant protocol for
achieving consensus in distributed systems. Recently,
it has been successfully integrated in a number of de-
ployed [4, 28] and proposed [19] distributed systems. In
this section, we show how execution steering can be ap-
plied to Paxos to steer away from realistic bugs that have
occurred in previously deployed systems [4, 28]. The
Paxos protocol includes five steps:

1. A leader tries to take the leadership position by
sending Prepare messages to acceptors, and it in-
cludes a unique round number in the message.

2. Upon receiving a Prepare message, each acceptor
consults the last promised round number. If the
message’s round number is greater than that num-
ber, the acceptor responds with a Promise message
that contains the last accepted value if there is any.

3. Once the leader receives a Promise message from
the majority of acceptors, it broadcasts an Accept
request to all acceptors. This message contains
the value of the Promise message with the highest
round number, or is any value if the responses re-
ported no proposals.

4. Upon the receipt of the Accept request, each accep-
tor accepts it by broadcasting a Learn message con-
taining the Accepted value to the learners, unless it
had made a promise to another leader in the mean-
while.

5. By receiving Learn messages from the majority of
the nodes, a learner considers the reported value as
chosen.

The implementation we used was a baseline Mace
Paxos implementation that includes a minimal set of fea-
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tures. In general, a physical node can implement one or
more of the roles (leader, acceptor, learner) in the Paxos
algorithm; each node plays all the roles in our experi-
ments. The safety property we installed is the original
Paxos safety property: at most one value can be chosen,
across all nodes. The first bug we injected [28] is related
to an implementation error in step 3, and we refer to it
asbug1: once the leader receives the Promise message
from the majority of nodes, it creates the Accept request
by using the submitted value from the last Promise mes-
sage instead of the Promise message with highest round
number. Because the rate at which the violation (due to
the injected error) occurs was low, we had to schedule
some events to lead the live run toward the violation in
a repeatable way. The setup we use comprises 3 nodes
and two rounds, without any artificial packet delays. As
illustrated in Figure 8, in the first round the communi-
cation between nodeC and the other nodes is broken.
Also, a Learn packet is dropped from A to B. At the end
of this round,A chooses the value proposed by itself (0).
In the second round, the communication betweenA and
other nodes is broken. At the end of this round, the value
proposed byB (1) is chosen byB itself.

The second bug we injected (inspired by [4]) involves
keeping a promise made by an Acceptor, even after
crashes and reboots. As pointed in [4], it is often diffi-
cult to implement this aspect correctly, especially under
various hardware failures. Hence, we inject an error in
the way a promise is kept by not writing it to disk (we
refer to it asbug2). To expose this bug we use a scenario
similar to the one used forbug1, with the addition of a
reset of nodeB.

To stress test CrystalBall’s ability to avoid inconsis-
tencies at runtime, we repeat the live scenarios in the
cluster 200 times (100 times for each bug) while vary-



ing the time between rounds uniformly at random be-
tween 0 and 20 seconds. As we can see in Figure 9,
CrystalBall’s execution steering is successful in avoid-
ing the inconsistency at runtime 74% and 89% of the
time for bug1 and bug2, respectively. In these cases,
CrystalBall starts model checking after nodeC recon-
nects and receives checkpoints from other participants.
After running the model checker for 3.3 seconds,C suc-
cessfully predicts that the scenario in the second round
would result in violation of the safety property, and it
then installs the event filter. The avoidance by execution
steering happens whenC rejects the Propose message
sent byB. Execution steering is more effective forbug2
than forbug1, as the former involves resettingB. This
in turn leaves more time for the model checker to redis-
cover the problem by: i) consequence prediction, or ii)
replaying a previously identified erroneous scenario. Im-
mediate safety check engages 25% and 7% of the time,
respectively (in cases when model checking did not have
enough time to uncover the inconsistency), and prevents
the inconsistency from occurring later, by dropping the
Learn message fromC at nodeB. CrystalBall could not
prevent the violation for only 1% and 4% of the runs, re-
spectively. The cause for these false negatives was the
incompleteness of the set of checkpoints.

4.5 Performance Impact of CrystalBall

Memory, CPU, and bandwidth consumption. Be-
cause consequence prediction runs in a separate process
that is most likely mapped to a different CPU core on
modern processors, we expect little impact on the ser-
vice performance. In addition, since the model checker
does not cache previously visited states (it only stores
their hashes) the memory is unlikely to become a bottle-
neck between the model-checking CPU core and the rest
of the system.

One concern with state exploration such as model-
checking is the memory consumption. Figure 10 shows
the consequence prediction memory footprint as a func-
tion of search depth for our RandTree experiments. As
expected, the consumed memory increases exponentially
with search depth. However, since the effective Crystal-
Ball’s search depth in is less than 7 or 8, the consumed
memory by the search tree is less than 1MB and can thus
easily fit in the L2 or L3 (most recently) cache of the
state of the art processors. Having the entire search tree
in-cache reduces the access rate to main memory and im-
proves performance.

In the deep online debugging mode, the model checker
was running for 950 seconds on average in the 100-node
case, and 253 seconds in the 6-node case. When running
in the execution steering mode (25 nodes), the model
checker ran for an average of about 10 seconds. The
checkpointing interval was 10 seconds.
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Figure 11:CrystalBall slows down Bullet′ by less than 10%
for a 20 MB file download.

The average size of a RandTree node checkpoint is
176 bytes, while a Chord checkpoint requires 1028 bytes.
Average per-node bandwidth consumed by checkpoints
for RandTree and Chord (100-nodes) was 803 bps and
8224 bps, respectively. These figures show that over-
heads introduced by CrystalBall are low. Hence, we did
not need to enforce any bandwidth limits in these cases.
Overhead from Checking Safety Properties. In prac-
tice we did not find the overhead of checking safety prop-
erties to be a problem because: i) the number of nodes in
a snapshot is small, ii) the most complex of our proper-
ties haveO(n2) complexity, wheren is the number of
nodes, and iii) the state variables fit into L2 cache.
Overall Impact. Finally, we demonstrate that having
CrystalBall monitor a bandwidth-intensive application
featuring a non-negligible amount of state such as Bullet′

does not significantly impact the application’s perfor-
mance. In this experiment, we instructed 49 Bullet′ in-
stances to download a 20 MB file. Bullet′ is not a CPU
intensive application, although computing the next block
to request from a sender has to be done quickly. It
is therefore interesting to note that in 34 cases during



this experiment the Bullet′ code was competing with the
model checker for the Xeon CPU with hyper-threading.
Figure 11 shows that in this case using CrystalBall re-
duced performance by less than 5%. Compressed Bullet′

checkpoints were about 3 kB in size, and the bandwidth
that was used for checkpoints was about 30 Kbps per
node (3% of a node’s outbound bandwidth of 1 Mbps).
The reduction in performance is therefore primarily due
to the bandwidth consumed by checkpoints.

5 Related Work

Debugging distributed systems is a notoriously difficult
and tedious process. Developers typically start by us-
ing an ad-hoc logging technique, coupled with strenuous
rounds of writing custom scripts to identify problems.
Several categories of approaches have gone further than
the naive method, and we explain them in more detail in
the remainder of this section.
Collecting and Analyzing Logs. Several approaches
(Magpie [2], Pip [34]) have successfully used exten-
sive logging and off-line analysis to identify performance
problems and correctness issues in distributed systems.
Unlike these approaches, CrystalBall works on deployed
systems, and performs an online analysis of the system
state.
Deterministic Replay with Predicate Checking. Fri-
day [14] goes one step further than logging to en-
able a gdb-like replay of distributed systems, including
watch points and checking for global predicates. WiDS-
checker [28] is a similar system that relies on a combi-
nation of logging/checkpointing to replay recorded runs
and check for user predicate violations. WiDS-checker
can also work as a simulator. In contrast to replay-
and simulation-based systems, CrystalBall explores ad-
ditional states and can steer execution away from erro-
neous states.
Online Predicate Checking. Singh et al. [40] have
advocated debugging by online checking of distributed
system state. Their approach involves launching queries
across the distributed system that is described and
deployed using the OverLog/P2 [40] declarative lan-
guage/runtime combination. D3S [27] enables develop-
ers to specify global predicates which are then automati-
cally checked in a deployed distributed system. By using
binary instrumentation, D3S can work with legacy sys-
tems. Specializedcheckersperform predicate-checking
topology on snapshots of the nodes’ states. To make
the snapshot collection scalable, the checker’ssnapshot
neighborhoodcan be manually configured by the devel-
oper. This work has shown that it is feasible to collect
snapshots at runtime and check them against a set of
user-specified properties. CrystalBall advances the state-
of-the-art in online debugging in two main directions:

1) it employs an efficient algorithm for model checking
from a live state to search for bugs “deeper” and “wider”
than in the live run, and it 2) enables execution steering to
automatically prevent previously unidentified bugs from
manifesting themselves in a deployed system.
Model Checking. Model checking techniques for finite
state systems [16, 20] have proved successful in anal-
ysis of concurrent finite state systems, but require the
developer to manually abstract the system into a finite-
state model which is accepted as the input to the system.
Early efforts on explicit-state model checking of C and
C++ implementations [31, 30, 46] have primarily con-
centrated on a single-node view of the system.

MODIST [45] and MaceMC [22] represent the state-
of-the-art in model checking distributed system imple-
mentations. MODIST [45] is capable of model check-
ing unmodified distributed systems; it orchestrates state
space exploration across a cluster of machines. MaceMC
runs state machines for multiple nodes within the same
process, and can determine safety and liveness viola-
tions spanning multiple nodes. MaceMC’s exhaustive
state exploration algorithm limits in practice the search
depth and the number of nodes that can be checked. In
contrast, CrystalBall’s consequence prediction allows it
to achieve significantly shorter running times for similar
depths, thus enabling it to be deployed at runtime. In
[22] the authors acknowledge the usefulness of prefix-
based search, where the execution starts from a given
supplied state. Our work addresses the question of ob-
taining prefixes for prefix-based search: we propose to
directly feed into the model checker states as they are
encountered in live system execution. Using CrystalBall
we found bugs in code that was previously debugged in
MaceMC and that we were not able to reproduce using
MaceMC’s search. In summary, CrystalBall differs from
MODIST and MaceMC by being able to run state space
exploration from live state. Further, CrystalBall supports
execution steering that enables it to automatically pre-
vent the system from entering an erroneous state.

Cartesian abstraction [1] is a technique for over-
approximating state space that treats different state com-
ponents independently. The independence idea is also
present in our consequence prediction, but, unlike over-
approximating analyses, bugs identified by consequence
search are guaranteed to be real with respect to the model
explored. The idea of disabling certain transitions in
state-space exploration appears in partial-order reduction
(POR) [15],[13]. Our initial investigation suggests that a
POR algorithm takes considerably longer than the con-
sequence prediction algorithm. The advantage of POR
is its completeness, but completeness is of second-order
importance in our case because no complete search can
terminate in a reasonable amount of time for state spaces
of distributed system implementations.



Runtime Mechanisms. In the context of operating sys-
tems, researchers have proposed mechanisms that safely
re-execute code in a changed environment to avoid er-
rors [33]. Such mechanisms become difficult to deploy
in the context of distributed systems. Distributed transac-
tions are a possible alternative to execution steering, but
involve several rounds of communication and are inap-
plicable in environments such as wide-area networks. A
more lightweight solution involves forming a FUSE [11]
failure group among all nodes involved in a join process.
Making such approaches feasible would require collect-
ing snapshots of the system state, as in CrystalBall. Our
execution steering approach reduces the amount of work
for the developer because it does not require code mod-
ifications. Moreover, our experimental results show an
acceptable computation and communication overhead.

In Vigilante [9] and Bouncer [8], end hosts cooper-
ate to detect and inform each other about worms that
exploit even previously unknown security holes. Hosts
protect themselves by generating filters that block bad
inputs. Relative to these systems, CrystalBall deals with
distributed system properties, and predicts inconsisten-
cies before they occur.

Researchers have explored modifying actions of con-
current programs to reduce data races [18] by inserting
locks in an approach that does not employ running static
analysis at runtime. Approaches that modify state of a
program at runtime include [10, 36]; these approaches
enforce program invariants or memory consistency with-
out computing consequences of changes to the state.

6 Conclusions

We presented a new approach for improving the relia-
bility of distributed systems, where nodes predict and
avoid inconsistencies before they occur, even if they have
not manifested in any previous run. We believe that
our approach is the first to give running distributed sys-
tem nodes access to such information about their future.
To make our approach feasible, we designed and im-
plemented consequence prediction, an algorithm for se-
lectively exploring future states of the system, and de-
veloped a technique for obtaining consistent information
about the neighborhood of distributed system nodes. Our
experiments suggest that the resulting system, Crystal-
Ball, is effective in finding bugs that are difficult to de-
tect by other means, and can steer execution away from
inconsistencies at runtime.
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