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Abstract i

We propose a new approach for developing and de-

ploying distributed systems, in which nodes predict dis-

tributed consequences of their actions, and use this in-

formation to detect and avoid errors. Each node con-

tinuously runs a state exploration algorithm on a re- 7

cent consistent snapshot of its neighborhood and pre- !

dicts possible future violations of specified safety prop- \

erties. We describe a new state exploration algorithm, ,’
b c d

consequence prediction, which explores causally related

chains of events that lead to property violation. . . . .
Thi d i he desi d impl . Figure 1:Execution path coverage by a) classic model check-
Is paper describes the design and Imp ementatloi g, b) replay-based or live predicate checking, c) Criza#l

of this approach, termed CrystalBall. We evaluate Crys+n geep online debugging mode, and d) CrystalBall in executi
talBall on RandTree, BulletPrime, Paxos, and Chordsteering mode. A triangle represents the state space sedgh
distributed system implementations. We identified newthe model checker; a full line denotes an execution pathef th
bugs in mature Mace implementations of three systemssystem; a dashed line denotes an avoided execution path that
Furthermore, we show that if the bug is not correctedwould lead to an inconsistency.

during system development, CrystalBall is effective in

steering the execution away from inconsistent states at . ) o )
runtime plementation can contain errors arising from complexi-

ties of realistic distributed environments or simply cod-
ing errors [27]. Many of these errors can only manifest
1 Introduction after the system has been running for a long time, has de-
veloped a complex topology, and has experienced a par-
Complex distributed protocols and algorithms are used irticular sequence of low-probability events such as node
enterprise storage systems, distributed databases; largesets. Consequently, it is difficult to detect such errors
scale planetary systems, and sensor networks. Erronssing testing and model checking, and many of such er-
in these protocols translate to denial of service to someors remain unfixed after the system is deployed.
clients, potential loss of data, and monetary losses. The We propose to leverage increases in computing power
Internet itself is a large-scale distributed system, andand bandwidth to make it easier to find errors in dis-
there are recent proposals [19] to improve its routing retributed systems, and to increase the resilience of the
liability by further treating routing as a distributed con- deployed systems with respect to any remaining errors.
sensus problem [26]. Design and implementation probin our approach, distributed system nodes predict con-
lems in these protocols have the potential to deny vitakequences of their actions while the system is running.
network connectivity to a large fraction of users. Each node runs a state exploration algorithm on a consis-
Unfortunately, it is notoriously difficult to develop re- tent snapshot of its neighborhood and predicts which ac-
liable high-performance distributed systems that run ovetions can lead to violations of user-specified consistency
asynchronous networks. Even if a distributed system igroperties. As Figure 1 illustrates, the ability to detect
based on a well-understood distributed algorithm, its im-future inconsistencies allows us to address the problem

a



of reliability in distributed systems on two fronts: de- e We describe CrystalBall, the implementation of
bugging and resilience. our approach on top of the Mace framework [21].
We evaluate CrystalBall on RandTree, Bullet
Paxos, and Chord distributed system implementa-
tions. CrystalBall detected several previously un-
known bugs that can cause system nodes to reach
inconsistent states. Moreover, if the developer is not
in a position to fix these bugs, CrystalBall's execu-
tion steering predicts them in a deployed system and
steers execution away from them, all with an accept-
able impact on the overall system performance.

e Our technique enables deep online debugging be-
cause it explores more states than live runs alone
or model checking from the initial state. For each
state that a running system experiences, our tech-
nigue checks many additional states that the system
did not go through, but that it could reach in simi-
lar executions. This approach combines benefits of
distributed debugging and model checking.

e Our technique aids resilience because a node can
modify its behavior to avoid a predicted inconsis- 1 2 Example
tency. We call this approaclxecution steering
Execution steering enables nodes to resolve nonWe next describe an example of an inconsistency ex-
determinism in ways that aim to minimize future hibited by a distributed system, then show how Crystal-
inconsistencies. Ball predicts and avoids it. The inconsistency appears
in the Mace [21] implementation of the RandTree over-
To make this approach feasible, we need a fastay. RandTree implements a random, degree-constrained
state exploration algorithm. We describe a new algo-overlay tree designed to be resilient to node failures and
rithm, termedconsequence predictipwhich is efficient  network partitions. Trees built by an earlier version of
enough to detect future violations of safety properties inthis protocol serve as a control tree for a number of large-
arunning system. Using this approach we identified bugscale distributed services such as Bullet [23] and Ran-
in Mace implementations of a random overlay tree, andSub [24]. In general, trees are used in a variety of mul-
the Chord distributed hash table. These implementationgicast scenarios [3, 7] and data collection/monitoring en-
were previously tested as well as model-checked by exvironments [17]. Inconsistencies in these environments
haustive state exploration starting from the initial syste translate to denial of service to users, data loss, incon-
state. Our approach therefore enables the developer istent measurements, and suboptimal control decisions.
uncover and correct bugs that were not detected usinghe RandTree implementation was previously manually
previous techniques. Moreover, we show that, if a bug isdebugged both in local- and wide-area settings over a pe-
not detected during system development, our approach isod of three years, as well as debugged using an existing
effective in steering the execution away from erroneousnodel checking approach [22], but, to our knowledge,
states, without significantly degrading the performancethis inconsistency has not been discovered before (see
of the distributed service. Section 4 for some of the additional bugs that Crystal-
Ball discovered).

11 C ibuti RandTree Topology. Nodes in a RandTree overlay form
' ontributions a directed tree of bounded degree. Each node maintains
We summarize the contributions of this paper as follows:a list of its children and the address of the root. The node
with the numerically smallest IP address acts as the root
e We introduce the concept of continuously executingof the tree. Each non-root node contains the address of
a state space exploration algorithm in parallel with aits parent. Children of the root maintain a sibling list.
deployed distributed system, and introduce an algoNOte that, for a given node, its parent, children, and sib-
rithm that produces useful results even under tightlings are all distinct nodes. The seemingly simple task
time constraints arising from runtime deployment; of maintaining a consistent tree topology is complicated
by the requirement for groups of nodes to agree on their
roles (root, parent, child, sibling) across asynchronous
etworks, in the face of node failures, and machine slow-

e We describe a mechanism for feeding a consis
tent snapshot of the neighborhood of a node in
large-scale distributed system into a running model

; . owns.

checker; the mechanism enables reliable consey i . he Overl A nod ‘0ins th lav b
uence prediction within limited time and band- _om_mgt e veray. noden; joins t ¢ overay by

q : issuing a Join request to one of the designated nodes.

width constraints;

If the node receiving the join request is not the root, it
e We present execution steering, a technique that enforwards the request to the root. If the root already has
ables the system to steer execution away from posthe maximal number of children, it asks one of its chil-
sible inconsistencies; dren to incorporate the node into the overlay. Once the



Local view(1) Local view(9) Local view(13) mation on actions that followed the resetrof;, song
maintainsns as its own child. Whem, accepts:i3 as

a child, it sends an UpdateSibling messaged4oAt this
point, ng simply inserts:;3 into the set of its sibling. As

a result,n;3 appears both in the list of children and in
the list of siblings ofug, which is inconsistent with the
notion of a tree.

Challenges in Finding Inconsistencies. We would
clearly like to avoid inconsistencies such as the one ap-
pearing in Figure 2. Once we have realized the pres-
ence of such inconsistency, we can, for example, mod-
ify the handler for the UpdateSibling message to re-
move the new sibling from the children list. Previously,
researchers had successfully used explicit-state model
checking to identify inconsistencies in distributed sys-
tems [22] and reported a number of safety and liveness
Safety property: children and siblings are disjoint lists  pygs in Mace implementations. However, due to an ex-
ponential explosion of possible states, current techsique
capable of model checking distributed system implemen-
tations take a prohibitively long time to identify inconsis
tencies, even for seemingly short sequences such as the
ones needed to generate states in Figure 2. For exam-
ple, when we applied the Mace Model Checker’s [22]
exhaustive search to the safety properties of RandTree

Figure 2: An inconsistency in a run of RandTree

request reaches a nodg whose number of children is
less than maximum allowed, nodg insertsn; as one of
its children, and notifies; about a successful join using

a JoinReply message (if, is the root, it also notifies its ' e N : g -
other children about their new sibling; using an Up- starting from the initial state, it failed to identify the-in
dateSibling message). consistency in Figure 2 even after running for 17 hours

Example System State. The first row of Figure 2 shows (on a 3.4-GHz Pentium-4 Xeon that we used for all our
a state of the system that we encountered by runmn&xperiments in Section 4). The reason for this long run-

RandTree in the ModelNet cluster [43] starting from the NiNG time is the large number of states reachable from the
initial state. We examine the local states of nodgs initial state up to the depth at which the bug occurs, all

ng, andn,s. For each node we display its neighbor- of which are examined by an exhaustive search.
hood view as a small graph whose central nodeiiself,
marked with a circle. If a node is root and in a “joined”
state, we mark it with a triangle in its own view. Instead of running the model checker from the initial
The state in the first row of Figure 2 is formed by;  state, we propose to execute a model checker concur-
joining as the only child of.g and them, joining and  rently with the running distributed system, and contin-
assuming the role of the new root withy as its only child  yously feed current system states into the model checker.
(n13 remains as the only child ofy). Although the fi-  When, in our example, the system reaches the state at the
nal state shown in first row of Figure 2 is simple, it takes beginning of Figure 2, the model checker will predict the
13 steps of the distributed system (such as atomic hanstate at the end of Figure 2 as a possible future inconsis-
dler executions, including application events) to reachtency. In summary, instead of trying to predict all possi-
this state from the initial state. ble inconsistencies starting from the initial state (which
Scenario Exhibiting Inconsistency. Figure 2 describes  for complex protocols means never exploring states be-
a sequence of actions that leads to a state that violates ti@nd the initialization phase), our model checker predicts
consistency of the tree. We use arrows to represent thiconsistencies that can occur in a system that has been
sending and the receiving of some of the relevant mesrunning for a significant amount of time in a realistic en-
sages. A dashed line separates distinct distributed systegironment.
states (for simplicity we skip certain intermediate states Ag Figure 1 suggests, compared to the standard model
and omit some messages). checking approach, this approach identifies inconsisten-
The sequence begins by a silent reset of nage  cies that can occur within much longer system execu-
(such reset can be caused by, for example, a power faitions. Compared to simply running the system for a long

ure). After the resetp;3 attempts to join the overlay time, our approach has two advantages.
again. The root; accepts the join request and addsg
as its child. Up to this point nodey received no infor- 1. Our approach systematically covers a large number

1.3 CrystalBall Overview



of executions that contain low-probability events, Safety Properties
such as node resets that ultimately triggered the in-

snapshots

consistency in Figure 2. It can take a very long time checkdoints Ervs:a'?la” C‘;:Zg?c‘:fon:e
. . ontroller

for a running system to encounter such a scenario, violations

which makes testing for possible bugs difficult. Our local checkpoint

technique therefore improves system debugging by
providing a new technique that combines some of
the advantages of testing and static analysis.

neighbor info

event filter

Service

i messages,
Runtime

2. Our approach identifies inconsistencies before they mespages timers m‘:ctﬁlfe)
actually occur. This is possible because the model
checker can simulate packet transmission in time CrystalBall node
shorter than propagation latency, and because it can
simulate timer events in time shorter than than the Figure 4: High-level overview of CrystalBall

actual time delays. This aspect of our approach

opens an entirely new possibility: adapt the behav-. . . .
ioe of the runningysystera on the)flly andpavoid an in- join request of;3 and to break the TCP connection with

. . ; . it. Noden3 eventually succeeds joining the random tree
consistency. We call this technigegecution steer- - .
. . . . (perhaps after some other nodes have joined first). The
ing. Because it does not rely on a history of past in-

X ; . . . stale information aboutis in ng is removed onceu
consistencies, execution steering is applicable eveil. . .
. ) ) . iscovers that the stale communication channel with
to inconsistencies that were previously never ob-. . o
. . is closed, which occurs the first time whegattempts to
served in past executions.

communicate with3. Figure 3 presents one scenario il-
lustrating this alternate execution sequence. Effegtivel
execution steering has exploited the non-determinism

Local View (0) Local View (1) Local View (9) Local View (13)

INCONSISTENCY PREDICTED 1

il o and robustness of the system to choose an alternative ex-
©) <‘°’> N@ ecution path that does not contain the inconsistency.
2 CrystalBall Design
\K We next sketch the design of CrystalBall (see [44] for
@ é details). Figure 4 shows the high-level overview of a
fy@ I @ CrystalBall-enabled node. We concentrate on distributed
T systems implemented as state machines, as this is a
77777777 m; 7777777777 widely-used approach [21, 25, 26, 37, 39].
i @ NewRoot The state machine interfaces with the outside world
I il via the runtime module. The runtime receives the mes-
FILTER REMOVED . éleanup ohils sages coming from the network, demultiplexes them, and

>

invokes the appropriate state machine handlers. The

é runtime also accepts application level messages from
the state machines and manages the appropriate network

o ; connections to deliver them to the target machines. This

é) & module also maintains the timers on behalf of all services

{ i 5 that are running.
/\ UpdateSiblin

o The CrystalBall controller contains a checkpoint man-

° (? 13 ager that periodically collects consistent snapshots of a
s node’s neighborhood. The controller feeds them to the
Figure 3: An Example execution sequence that avoidgnodel checker, along with a checkpoint of the local state.
the inconsistency from Figure 2 thanks to executionThe model checker runs the consequence prediction al-
steering. gorithm which checks user- or developer-defined proper-

ties and reports any violation in the form of a sequence
Example of Execution Steering. In our example, a of events that leads to an erroneous state.
model checking algorithm running im; detects the vi- CrystalBall can operate in two modes. In teep on-

olation at the end of Figure 2. Given this knowledge, line debugging modghe controller only outputs the in-
execution steering causes nadenot to respond to the formation about the property violation. In tleecution

Join (ret




steering modehe controller examines the report from Enforcing Snapshot Consistency. To avoid false pos-
the model checker, prepareseavrent filterthat can avoid itives, we ensure that the neighborhood snapshot corre-
the erroneous condition, checks the filter’s impact, andsponds to a consistent view of a distributed system at
installs it into the runtime if it is deemed to be safe. some point of logical time. There has been a large body
of work in this area, starting with the seminal paper by
Chandy and Lamport [5]. We use one of the recent algo-
2.1 Consistent Neighborhood Snapshots rithms for obtaining consistent snapshots [29], in which
the general idea is to collect a set of checkpoints that
To check system properties, the model checker requiredo not violate the happens-before relationship [25] es-
a snapshot of the system-wide state. Ideally, every nodeablished by messages sent by the distributed service.
would have a consistent, up-to-date checkpoint of ev- Instead of gathering a global snapshot, a node peri-
ery other participant’s state. Doing so would give ev-odically sends a checkpoint request to the members of
ery node high confidence in the reports produced by théts snapshot neighborhood. Even though nodes receive
model checker. However, given that the nodes could be&heckpoints only from a subset of nodes, all distributed
spread over a high-latency wide-area network, this goaservice and checkpointing messages are instrumented to
is unattainable. In addition, the sheer amount of bandearry the checkpoint number (logical clock) and each
width required to disseminate checkpoints might be exneighborhood snapshot is a fragment of a globally con-
cessive. sistent snapshot. In particular, a node that receives a mes-
Given these fundamental limitations, we use a solutiorsage with a logical timestamp greater than its own logical
that aims for scalability: we apply model checking to a clock takes a forced checkpoint. The node then uses the
subsetof all states in a distributed system. We lever- forced checkpoint to contribute to the consistent snap-
age the fact that in scalable systems a node typicallghot when asked for it.
communicates with a small subset of other participants Node failures are commonplace in distributed systems,
(“neighbors”) and perform model checking only on this and our algorithm has to deal with them. The check-
neighborhood. In some distributed hash table implemenpoint manager proclaims a node to be dead if it experi-
tations, a node keeps track 6f(logn) other nodes; in ences a communication error (e.g., a broken TCP con-
mesh-based content distribution systems nodes communection) with it while collecting a snapshot. An addi-
nicate with a constant number of peers; or this numbetional cause for an apparent node failure is a change of
does not explicitly grow with the size of the system. In aa node’s snapshot neighborhood in the normal course of
random overlay tree, a node is typically aware of the rootoperation (e.g., when a node changes parents in the ran-
its parent, its children, and its siblings. We therefore ar-dom tree). In this case, the node triggers a new snapshot
range for a node to distribute its state checkpoints to itgather operation.
neighbors, and we refer to them sisapshot neighbor- Checkpoint Content. Although the total footprint of
hood The checkpoint managemaintains checkpoints some services might be very large, this might not nec-
and snapshots. Other CrystalBall components can reessarily be reflected in checkpoint size. For example,
guest an on-demand snapshot to be gathered by invokinipe Bullet [23] file distribution application has non-
an appropriate call on the checkpoint manager. negligible total footprint, but the actual file content tsan
Discovering and M anaging Snapshot Neighborhoods.  ferred in Bullet does not play any role in consistency de-
To propagate checkpoints, the checkpoint manager needéction. In general, the checkpoint content is given by a
to know the set of a node’s neighbors. This set is depenserialization routine. The developer can choose to omit
dent upon a particular distributed service. We use twoeertain parts of the state from serialized content and re-
techniques to provide this list. In the first scheme, weconstruct them if needed at de-serialization time. As are-
ask the developer to implement a method that will re-sult, checkpoints are smaller, and the code compensates
turn the list of neighbors. The checkpoint manager therthe lack of serialized state when a local state machine
periodically queries the service and updates its snapshdt being created from a remote node’s checkpoint in the
neighborhood. model checker. We use a set of well-known techniques

Since changing the service code might not always bd®" managing checkpoint storage (quotas) and control-
possible, our second technique uses a heuristic to detef"d the bandwidth used by checkpoints (bandwidth lim-
mine the snapshot neighborhood. Specifically, we periltS; compression).
odicglly query the runtime to obtain the list of open con-5 o Consequence Prediction Algorithm
nections (for TCP), and recent message recipients (for
UDP). We then cluster connection endpoints accordingrhe key to enabling fast prediction of future inconsisten-
to the communication times, and selects a sufficientlycies in CrystalBall is our consequence prediction algo-
large cluster of recent connections. rithm, presented in Figure 5. For readability, we present



1proc findConseq(currentState : G, property : {Gboolean))

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

N — node identifiers

explored = emptySet(); errors = emptySet(); 5 — node states

localExplored = emptySet(); M — message Qon'Fents .
frontier = emptyQueue(); N x M — (destination process, message)-pair
frontier.addLast(currentState); C = 2N*M _ get of messages with destination
while (ISTOP.CRITERION) A — local node actions (timers, application calls)
state = frontier.popFirst(); NxS N M
if (property(state)) system state: (L, 1) € G, G =2V %% x 2V%
errors.add(state)/ predicted inconsistency found local node states, C N x S (function fromN to S)
explored.add(hash(state)); , in-flight messages (network)l C N x M
foreach ((n,s) € state.L)// node n in local state s i ]
// process all network handlers behavior functionsfor each node :
foreach (((s,m),(s’,c))e Hxs where (n,m) € state.l) message handler Hy; C (S x M) x (S x C)

// node n handles message m according to st. machinenternal action handlerH, C (S x A) x (S x C)
addNextState(state,n,s{sh},c); o ] T
// process local actions only for fresh local states transition function for distributed system :

if (llocalExplored.contains(hash(n,s))) node message handler execution

foreach (((s,a),(s’,c))e Ha) ((s1,m), (s,¢)) € H,

addNextState(state,n,s{g,c); 1,11/, 192, M

localExplored.add(hash(n,s)); before: (Lo W {(n,s1)}, Io W {(n,m)})~
after: (Lo (] {(n, 82)},10 UC)

proc addNextState(state,n,s,s’,c0,c)
nextState.L = (state.\ {(n,s)}) U {(n,s")};

nextState.| = (state)| CO) U ¢; internal node action (timer, application calls)

if (lexplored.contains(hash(nextState))) ((s1,a),(s2,¢)) € Ha
frontier.addLast(nextState); before: (Lo w{(n,s1)},I)~
Figure 5: Consequence Prediction Algorithm after: (Lo W{(n,s2)},IUc)

Figure 6: A Simple Model of a Distributed System
the algorithm as a refinement of a generic state-space

search. The notation is based on a high-level semantics

of a distributed system, shown in Figure 6. (Our concrete NOte thathash(n, s) in Figure 5 implies that we have
model checker implementation uses an iterative deepseParate tables corresponding to each node for keeping

ening algorithm which combines memory efficiency of Nashed local states. If a state variable is not necessary
depth-first search, while favoring the states in the near ful© distinguish two separate states, the user can annotate
ture, as in breadth-first search.) The STORITERION  the state variable that he or she does not want include
in Figure 5 in our case is given by time constraints and!" the hash function, improving the performance of Con-
external commands to restart the model checker upon thgégquence Prediction. Instead of holding all encountered
arrival of a new snapshot. hashes, the hash table could be designed as a bounded
In Line 8 of Figure 5 the algorithm checks whether the ¢ache 1o fit into the L2 cache or main memory, favor-
explored state satisfies the desired safety properties. THB9 access speed while admitting the possibility of re-
developer can use a simple language [22] that involve§XPl0ring previously seen states.
loops, existential and comparison operators, state vari- Although simple, the idea of removing from the search
ables, and function invocations to specify the propertiesctions of nodes with previously seen states eliminates
Exploring Independent Chains. We can divide the Many (uninteresting) interleavings from search and has
actions in a distributed system inewent chainswhere & Profound impact on the search depth that the model

each chain starts with an application or scheduler evergN€Ccker can reach with a limited time budget. This
and continues by triggering network events. We call twochange was therefore key to enabling the use of the
chainsindependenif no event of the first chain changes MOdel checker at runtime. Knowing that consequence
state of a node involved in the second chain. ConsePrediction avoids considering certain states, the questio

quence Prediction avoids exploring the interleavings of €Ma&ins whether the remaining states are sufficient to
independent chains. Therefore, the testin Line 17 of FigMmake the search useful. Ultimately, the answer to this
ure 5 makes the algorithm re-explore the scheduler anguestion comes from our evaluation (Section 4).
application events of a node if and only if the previous

events c_hanged thg local state of the node. For depem 3 Execution Steering

dent chains, if a chain event changes local state of a node,

Consequence Prediction therefore explores all other adSrystalBall’'s execution steering mode enables the sys-

tive chains which have been initiated from this node.  tem to avoid entering an erroneous state by steering its



execution path away from predicted inconsistencies. Ifa  failure-handling code that deals with broken TCP
protocol was designed with execution steering in mind, connections. This makes sending a TCP RST signal
the runtime system could report a predicted inconsis-  a good candidate for a sound event filter, and is the
tency as a special programming language exception, and filter we choose to use in CrystalBall. In the case
allow the service to react to the problem using a service-  of communication over UDP, the filter simply drops
specific policy. However, to measure the impact on exist- the UDP packet, which could similarly happen in
ing implementations, this paper focuses on generic run-  normal operation of the network.

time mechanisms that do not require the developer to in- . )

sert exception-handling code. 2. Exp_lorann of qurected Executions. Bef(_)re al-
Event Filters. Recall that a node in our framework op- !owmg_the event filter to perform an execution stee_r-
erates as a state machine and processes messages, timer 'Nd action, CrystalBall runs the consequence predic-
events, and application calls via handlers. Upon noticing 10N algorithm to check the effect of the event filter
that running a certain handler can lead to an erroneous ~ &ction on the system. If the consequence prediction

state, CrystalBall installs agvent filter which temporar- algorithm does not suggest that the filter actions are
ily blocks the invocation of the state machine handlerfor ~ S&fe, CrystaiBall does not attempt execution steer-
messages from the relevant sender. ing and leaves the system to proceed as usual.

The rationale is that a distributed system often Con'Rechecking Previously Discovered Violations.  An
tains a large amount of non-determinism that allows itg, ey fiter reflects possible future inconsistencies reach
to proceed even if certain transitions are disabled. FOLp\e from the current state, and leaving an event filter in
example, if the_offen_dlng message is a Join reque_st Dlace indefinitely could deny service to some distributed
a random tree, ignoring the message can prevent violalky stem participants. CrystalBall therefore removes the
ing a local state property. The joining nodes can latefgjiar from the runtime after every model checking run.
retry the procedure with an alternative potential pareniqever, it is useful to quickly check whether the previ-
and successfully join the tree. Similarly, if handling a gy identified error path can still lead to an erroneous
message causes an_equwalent of_a race condition Mafsndition in a new model checking run. This is espe-
ifested as an inconsistency, delaying message hand_lm&a“y important given the asynchronous nature of the
allows the system to proceed to .the point where hand“”?nodel checker relative to the system messages, which
the message becomes safe again. Note that state machiflg, event the model checker from running long enough
handle_rs are at(_)rmc, so CrystalBall is unlikely to inter- to rediscover the problem. To prevent this from happen-
fer_e with any eX|st_|ng recovery code. ) . ing, the first step executed by the model checker is to
Pom_t of Intervention. In Qe”e_fa" executpn steering replay the previously discovered error paths. If the prob-
can intervene at several points in the execution path. OYg, reappears, CrystalBall immediately reinstalls the ap-
current policy is to steer the execution as early as pospropriate filter
sible. For example, if the erroneous execution path in1 mmediate Safety Check. CrystalBall also supports
volves a n_ode_issuing_ a Joi_n request after resetting, thﬁnmediate safety checlt mechanism that avoids incon-
system’s first interaction with that node occurs at thegjgtencies that would be caused by executing the current
node which receives its jom rquest. If this nodg diS-handler. Such imminent inconsistencies can happen even
covers the erroneous path, it can install the event filter. in the presence of execution steering because 1) conse-
Non-Disr uptiveness of Execution Steering. Ideally,  ,ance prediction explores states given by only a subset
execution steering would always prevent inconsistenciegs . gistributed system nodes, and 2) the model checker
from occurring, without introducing new inconsistencies runs asynchronously and may not always detect incon-
due to a change in behavior. In general, however, guarjgiancies in time. The immediate safety check specula-

anteeing the absence of inconsistencies is as difficult at?\/ely runs the handler, checks the consistency properties

gularalllntseln? that thke entire program Is _error-ffreg. CIySin the resulting state, and prevents actual handler execu-
talBall therefore makes execution steering safe in Pracio, f the resulting state is inconsistent.

tice through two mechanisms: We have found that exclusively using immediate

1. Sound Choice of Filters. It is important that safety check would not be sufficient for avoiding incon-
the chosen corrective action does not sacrifice thesistencies. The advantages of installing event filters are:
soundness of the state machines@und filterings i) performance benefits of avoiding the bug sooner, e.g.,
the one in which the observed sequence of eventseducing unnecessary message transmission, ii) faster re-
after filtering is a subset of possible sequence ofaction to an error, which implies greater chance of avoid-
events without filtering. The breaking of a TCP ing a “point of no return” after which error avoidance
connection is common in a distributed system usingis impossible, and iii) the node that is supposed to ul-
TCP. Therefore, such distributed systems includetimately avoid the inconsistency by immediate safety



check might not have all the checkpoints needed to noshow that it works well in practice, but we expect that
tice the violation; this can result in false negatives (asfurther enhancements are possible.

shown in Figure 9). . . .

Liveness|ssues. Itis possible that by applying an event 3 | mplementation Highlights

filter would affect liveness properties of a distributed-sys

tem. In our experience, due to a large amount of non o »
determinism (e.g., the node is bootstrapped with a lisf1ace allows distributed systems to be specified suc-

of multiple nodes it can join), the system usually finds CinCtly and outputs high-performance C++ code. We im-
a way to make progress. We focus on enforcing Safet)plemented our consequence prediction within the Mace

properties, and we believe that occasionally sacrificing"@d€! checker, and run the model checker as a separate

liveness is a valid approach. According to a negative rej[hread that communicates future inconsistencies to the

sult by Fischer, Lynch, and Paterson [12], itis impossibleruntime' Our current implementatiqn of the immediate
to have both in an asynchronous system anyway. (For ex3afety check executes the handler in a copy of the state

ample, the Paxos [26] protocol guarantees safety but nghachine’s virtual memory (using fork()), and holds the
liveness.) transmission of messages until the successful completion

of the consistency check. Upon encountering an incon-

sistency in the copy, the runtime does not execute the
2.4 Scope of Applicability handler in the primary state machine. In case of appli-
. . . cations with high messaging/state change rates in which
Cry_staIBaII do_es not aim t.o f!nd all erors; it is rather the performance of immediate safety check is critical, we
deS|gned_to find and avoid important errors that €a%ould obtain a state checkpoint [41] before running the
r_namfest in real runs of the system. Results_ n Sec'handler and rollback to it in case of an encountered in-
tion 4 demonstrate that CrystalBall works well in prac-

. . R consistency. Another option would be to employ operat-
tice. Nonetheless, we next discuss the limitations of our Y P ploy op

approach and characterize the scenarios in which we belr-]g system-level speculation [32]
lieve CrystalBall to be effective.

Up-to-Date Snapshots. For Consequence Predictionto 4 Evaluation

produce results relevant for execution steering and imme-

diate safety check, it needs to receive sufficiently manyOur experimental evaluation addresses the following
node checkpoints sufficiently often. (Thanks to snapshoguestions:1) Is CrystalBall effective in finding bugs in
consistency, this is not a problem for deep online debughve runs? 2) Can any of the bugs found by Crystal-
ging.) We expect the stale snapshots to be less of an issiggll also be identified by the MaceMC model checker
with stable propertiese.g., those describing a deadlock alone? 3) Is execution steering capable of avoiding in-
condition [5]. Since the node’s own checkpoint might consistencies in deployed distributed systedjs®re the

be stale (because of enforcing consistent neighborhoo@rystalBall-induced overheads within acceptable levels?
snapshots for checking multi-node properties), immedi-

ate safgty check is perhaps more applicable to node-loczﬁ'l Experimental Setup

properties.

Higher frequency of changes in state variables re\We conducted our live experiments using ModelNet [43].
quires higher frequency of snapshot exchanges. HighModelNet allows us to run live code in a cluster of
frequency snapshot exchanges in principle lead to: 1jnachines, while application packets are subjected to
more frequent model checker restarts (given the difficultypacket delay, loss, and congestion typical of the Inter-
in building incremental model checking algorithms), andnet. Our cluster consists of 17 older machines with dual
2) high bandwidth consumption. Among the examples3.4 GHz Pentium-4 Xeons with hyper-threading, 8 ma-
for which our techniques is appropriate are overlays inchines with dual 2.33 GHz dual-core Xeon 5140s, and 3
which state changes are infrequent. machines with 2.83 GHz Xeon X3360s (for Paxos exper-
Consequence Prediction asa Heuristic. Consequence iments). Older machines have 2 GB of RAM, while the
Prediction is a heuristic that explores a subset of thenewer ones have 4 GB and 8 GB. These machines run
search space. This is an expected limitation of explicit-GNU/Linux 2.6.17. One 3.4 GHz Pentium-4 machine
state model checking approaches applied to concrete intunning FreeBSD 4.9 served as the ModelNet packet for-
plementations of large software systems. The key queswvarder for these experiments. All machines are intercon-
tion in these approaches is directing the search towardsected with a full-rate 1-Gbps Ethernet switch.
most interesting states. Consequence Prediction uses in- We consider two deployment scenarios. For our large-
formation about the nature of the distributed system toscale experiments with deep online debugging, we mul-
guide the search; the experimental results in Section 4iplex 100 logical end hosts running the distributed ser-

We built CrystalBall on top of the Mace [21] framework.



vice across the 20 Linux machines, with 2 participantsidentified inconsistencies by running consequence pre-
running the model checker on 2 different machines. Wediction from the current state of the system for up to sev-
run with 6 participants for small-scale debugging exper-eral hundred seconds. To demonstrate their depth and
iments, one per machine. complexity, we detail four out of 13 inconsistencies we
We use a 5,000-node INET [6] topology that we fur- found in the three services we examined.

ther annotate with bandwidth capacities for each link.
The INET topology preserves the power law distribution
of node degrees in the Internet. We keep the latenciegve next discuss bugs we identified in the RandTree over-
generated by the topology generator; the average nefay protocol presented in Section 1.2. We name bugs ac-
work RTT is 130ms. We randomly assign participantscording to the consistency properties that they violate.

to act as clients connected to one-degree stub nodes ©hildren and Siblings Disjoint. The first safety prop-
the topology. We set transit-transit links to be 100 Mbps,erty we considered is that the children and sibling lists
while we set access links to 5 Mbps/1 Mbps inbound-should be disjoint. CrystalBall identified the scenario
/outbound bandwidth. To emulate the effects of crossrom Figure 2 in Section 1.2 that violates this property.
traffic, we instruct ModelNet to drop packets at randomThe problem can be corrected by removing the stale in-
with a probability chosen uniformly at random betweenformation about children in the handler for the Update-

4.2.1 Example RandTree Bugs Found

[0.001,0.005] separately for each link. Sibling message. CrystalBall also identified variations of
. . . this bug that requires changes in other handlers.
4.2 Deep Online Debugging Experience Recovery Timer Should Always Run. An important

safety property for RandTree is that the recovery timer

lations of safety properties) in two mature implementedShOUId always be scheduled. ~This timer periodically .
protocols in Mace, namely an overlay tree (RandTree)CauseS the nodes to send Probe messages to the peer list
and a distributed 'hash table (Chord [42]). These im_members with which it does not have direct connection.

in local- and wide-area settings, but were also modeFj 9 ' property

checked using MaceMC [22]. We have also used ourVas written by the authors of [22] but the authors did not
tool to find inconsistencies in Bulleta file distribu- report any violations of it. We believe that our approach
tion system that was originally implemented in MACE- discovered it in part because our experiments considered

DON [37], and then ported to Mace. We found 13 new o€ complex join scenarios,

subtle bugs in these three systems that caused violation SC(_enarlo exhibiting |n(_:on5|stenc:yrystalBall fou_n_d a
of safety properties. violation of the property in a state where node A joins it-

self, and changes its state to “joined” but does not sched-

We have used CrystalBall to find inconsistencies (vio-

System | Bugsfound | LOC Mace/C++ ule any timers. Although this does not cause problems
RandTree 7 309 /2000 immediately, the inconsistency happens when another
Chord 3 254 /2200 nodeB with smaller identifier tries to join, at which point

Bullet 3 2870/19628 A gives up the root position, seleck as the root, and

Table 1: Summary of inconsistencies found for each systemaddSB Ittoits peer “.St' At this poini4 has a non-empty
using CrystalBall. LOC stands for lines of code and reflectsPEE" “S,t but no run'nlng timer. .
both the MACE code size and the generated C++ code size. POSSible correction.Keep the timer scheduled even
The low LOC counts for Mace service implementations arewWhen a node has an empty peer list.
a result of Mace’s ability to express these services sutiginc
This number (_joes not incIL_lde the line counts for libraried an 4.2.2 Example Chord Bug Found
low-level services that services use from the Mace framkwor
We next describe a violation of a consistency property
Table 1 summarizes the inconsistencies that Crystalin Chord [42], a distributed hash table that provides key-
Ball found in RandTree, Chord and Bullet Typical  based routing functionality. Chord and other related dis-
elapsed times (wall clock time) until finding an incon- tributed hash tables form a backbone of a large number of
sistency in our runs have been from less than an hour uproposed and deployed distributed systems [17, 35, 38].
to a day. This time allowed the system being debugge@hord Topology. Each Chord node is assigned a Chord
to go through complex realistic scenarforystalBall g (effectively, a key). Nodes arrange themselves in an
F— — _ overlay ring where each node_keeps pointers to its prede-
During this time, the model checker ran concurrently withoen — sasgqr and successor. Even in the face of asynchronous
mally executing system. We therefore do not consider thig tio be . . .
wasted by the model checker before deployment; rathertlitigime message dellvery and node failures, Chord has to main-
consumed by a running system. tain a ring in which the nodes are ordered according to




Local View(A) Local View(C)

Because noded andC did not have an established TCP

B crashes connection,A does not observe the reset©@f Node A
replies toC by a FindPredReply message that sholis
successor to b€'. Upon receiving this message, nade
C reboots, rejoins with A i) sets its predecessor #j ii) stores the successor list in-
fingpred © cluded in the message as its successor list; and iii) sends

an UpdatePred messageAds successor which, in this

(X,c) where pred(A)=X case, igC itself. After sending this messag€,receives

a transport error fromd and removesA from all of its

_
S 3 internal structures including the predecessor pointer. In
% s other wordsC’s predecessor would be unset. Upon re-
?‘“?; § ceiving the (loopback) message to itsélfpbserves that
o=

the predecessor is unset and then sets it to the sender of
the UpdatePred message which(is Consequently'
has its predecessor pointing to itself while its successor

Figure 7:An inconsistency in a run of Chord. Nodghas its 1St includes other nodes. o
predecessor pointing to itself while its successor listides Possible correctionsOne possibility is for nodes to
other nodes. avoid sending UpdatePred messages to themselves (this

appears to be a deliberate coding style in Mace Chord).
If we wish to preserve such coding style, we can alterna-

their ids, and each node has a set of “fingers” that enablegvely place a check after updating a node’s predecessor:
it to reach exponentially larger distances on the ring.  if the successor list includes nodes in addition to itself,
Joining the System. To join the Chord ring, a nodd  avoid assigning the predecessor pointer to itself.
first identifies its potential predecessor by querying with
its id. This request is routed to the appropriate néte
which in turn replies toA. Upon receiving the reply, Next, we describe our experience of applying Crystal-
A inserts itself betwee and P’s successor, and sends ga|| to the Bullet [23] file distribution system. The
the appropriate messages to its predecessor and succefyjiet source sends the blocks of the file to a subset of
sor nodes to update their pointers. A "stabilize” timer nodes in the system; other nodes discover and retrieve
periodically updates these pointers. these blocks by explicitly requesting them. Every node
Property: If Successor is Self, So Is Predecessor. If  keeps a file map that describes blocks that it currently
a predecessor of a nodéequalsA, then its successor has. A node participates in the discovery protocol driven
must also bed (because thert is the only node in the py RandTree, and peers with other nodes that have the
ring). This is a safety property of Chord that had beenmost disjoint data to offer to it. These peering relation-
extensively checked using MaceMC, presumably usingships form the overlay mesh.
both exhaustive search and random walks. Bullet' is more complex than RandTree, Chord (and

Scenario exhibiting inconsistencgrystalBall found  tree-based overlay multicast protocols) because of 1) the
a state where nodg hasA as a predecessor but has an-need for senders to keep their receivers up-to-date with
other nodeB as its successor. This violation happensfile map information, 2) the block request logic at the re-
at depths that are beyond those reachable by exhaustiveiver, and 3) the finely-tuned mechanisms for achieving
search from the initial state. Figure 7 shows the scenarichigh throughput under dynamic conditions. The starting
During live execution, several nodes join the ring and allpoint for our exploration was property 1):
have a consistent view of the ring. Three nodgsB,  Sender’s File Map and Receivers View of it Should
andC are placed consecutively on the ring, i.4.is pre-  Beldentical. Every sender keeps a “shadow” file map
decessor of3 and B is predecessor af. ThenB expe-  for each receiver informing it which are the blocks it
riences a node reset and other nodes which have estahas not told the receiver about. Similarly, a receiver
lished TCP connection with receive a TCP RST. Upon keeps a file map that describes the blocks available at
receiving this error, nodd removesB from its internal  the sender. Senders use the shadow file map to compute
data structures. As a consequence, NddeonsidersC  “diffs” on-demand for receivers containing information
as its immediate successor. about blocks that are “new” relative to the last diff.

Starting from this state, consequence prediction de- Senders and receivers communicate over non-
tects the following scenario that leads to violatio.  blocking TCP sockets that are under control of MaceTcp-
experiences a node reset, losing all its statehen tries  Transport. This transport queues data on top of the TCP
to rejoin the ring and sends a FindPred messagé.to socket buffer, and refuses new data when its buffer is full.

4.2.3 ExampleBullet’ Bug Found



Scenario exhibiting inconsistencyn a live run last- 4.4 Execution Steering Experience
ing less than three minutes, CrystalBall quickly identi-

fied a mismatch between a sender’s file map and the reye next evaluate the capability of CrystalBall as a run-

ceivers view of it. The problem occurs when the diff time mechanism for steering execution away from previ-
cannot be accepted by the underlying transport.  Thysly unknown bugs.

code then clears the receiver's shadow file map, which
means that the sender will never try again to inform the
receiver about the blocks containing that diff. Interest-
ingly enough, this bug existed in the original MACE-
DON implementation, but there was an attempt to fix
it by the UCSD researchers working on Mace. The at- ] ] ] .

tempted fix consisted of retrying later on to send a diff 10 estimate the impact of execution steering on de-
to the receiver. Unfortunately, since the programmer lefiPloyed systems, we instructed the CrystalBall controller
the code for clearing the shadow file map after a failedio check for violations of RandTree safety properties (in-

send, all subsequent diff computations will miss the af-cluding the one described in Section 4.2.1). We ran a
fected blocks. live churn scenario in which one participant (processin a
. . . . . . cluster) per minute leaves and enters the system on aver-
Possible correctiongOnce the inconsistency is identi- ; .
) ) . : . _age, with 25 tree nodes mapped onto 25 physical cluster
fied, the fix for the bug is easy and involves not clearing : .

machines. Every node was configured to run the model

the sender's file map for the given receiver when a MeSthecker. The experiment ran for 1.4 hours and resulted

sage cannot be queued in the underlying transport. The : : . . i
next successful enqueuing of the diff will then correctly Ih the following data points, which suggest that in prac

. . tice the execution steering mechanism is not disruptive
include the block info. .
for the behavior of the system.

4.4.1 RandTree Execution Steering

When CrystalBall is not active, the system goes
4.3 Comparison with MaceM C through a total of 121 states that contain inconsisten-
cies. When only the immediate safety check but not the
To establish the baseline for model checking perfor-consequence prediction is active, the immediate safety
mance and effectiveness, we installed our safety propeheck engages 325 times, a number that is higher be-
erties in the original version of MaceMC [22]. We then cause blocking a problematic action causes further prob-
ran it for the three distributed services for which we iden-lematic actions to appear and be blocked successfully.
tified safety violations. After 17 hours, exhaustive searchFinally, we consider the run in which both execution
did not identify any of the violations caught by Crystal- steering and the immediate safety check (as a fallback)
Ball, and reached the depth of only Some of the specifi@re active. Execution steering detects a future inconsis-
depths reached by the model checker are as follows Ifency 480 times, with 65 times concluding that chang-
RandTree with 5 nodes: 12 levels, 2) RandTree with 100ng the behavior is unhelpful and 415 times modifying
nodes: 1 level, 3) Chord with 5 nodes: 14 levels, andthe behavior of the system. The immediate safety check
Chord with 100 nodes: 2 levels. This illustrates the limi- fallback engages 160 times. Through a combined action
tations of exhaustive search from the initial state. of execution steering and immediate safety check, Crys-
In another experiment, we additionally employed falBall avoided all inconsistencies, so there were no un-

random walk feature of MaceMC. Using this setup, caught violations (false negatives) in this experiment.

MaceMC identified some of the bugs found by Crystal- To understand the impact of CrystalBall actions on the
Ball, but it still failed to identify 2 Randtree, 2 Chord, and overall system behavior, we measured the time needed
3 Bullet bugs found by CrystalBall. In BullgtMaceMC  for nodes to join the tree. This allowed us to empirically
found no bugs despite the fact that the search lasted 32ddress the concern that TCP reset and message block-
hours. Moreover, even for the bugs found, the long list ofing actions can in principle cause violations of liveness
events that lead to a violation (on the order of hundredsproperties (in this case extending the time nodes need to
made it difficult for the programmer to identify the error join the tree). Our measurements indicated an average
(we spent five hours tracing one of the violations involv- node join times between 0.8 and 0.9 seconds across dif-
ing 30 steps). Such a long event list is unsuitable forferent experiments, with variance exceeding any differ-
execution steering, because it describes a low probabilence between the runs with and without CrystalBall. In
ity way of reaching the final erroneous state. In contrastsummary, CrystalBall changed system actions 415 times
CrystalBall identified violations that are close to live ex- (2.77% of the total of 14956 actions executed), avoided
ecutions and therefore more likely to occur in the imme-all specified inconsistencies, and did not degrade system
diate future. performance.
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Figure 8: Scenario that exposes a previously reported Paxo
violation of a safety property (two different values are stio
in the same instance).

‘T:igure 9:1n 200 runs that expose Paxos safety violations due
to two injected errors, CrystalBall successfully avoided in-
consistencies in all but 1 and 4 cases, respectively.

4.4.2 Paxos Execution Steering ) )
tures. In general, a physical node can implement one or

Paxos [26] is a well known fault-tolerant protocol for more of the roles (leader, acceptor, learner) in the Paxos
achieving consensus in distributed systems. Recently|gorithm; each node plays all the roles in our experi-
it has been successfully integrated in a number of dements. The safety property we installed is the original
ployed [4, 28] and proposed [19] distributed systems. Inpaxos safety property: at most one value can be chosen,
this section, we show how execution steering can be apacross all nodes. The first bug we injected [28] is related
plied to Paxos to steer away from realistic bugs that haveg an implementation error in step 3, and we refer to it
occurred in previously deployed systems [4, 28]. Theasbugl once the leader receives the Promise message
Paxos protocol includes five steps: from the majority of nodes, it creates the Accept request
1. A leader tries to take the leadership position byby using the submitted value from the last Promise mes-
sending Prepare messages to acceptors, and it isage instead of the Promise message Wlt_h hlghest round
cludes a unique round number in the message. num_b_er. Because the rate at which the violation (due to
. the injected error) occurs was low, we had to schedule
2. Upon receiving a Prepare message, each accept@hme events to lead the live run toward the violation in
consults the last promised round number. If the, repeatable way. The setup we use comprises 3 nodes

message’s round number is greater than that numznq 1o rounds, without any artificial packet delays. As

ber, the acceptor responds with & Promise messagfsirated in Figure 8, in the first round the communi-
that contains the last accepted value if there is any. - 5tion petween nodé' and the other nodes is broken.
3. Once the leader receives a Promise message fromlso, a Learn packet is dropped from A to B. At the end
the majority of acceptors, it broadcasts an Acceptof this round,A chooses the value proposed by itself (0).
request to all acceptors. This message containn the second round, the communication betwéesand
the value of the Promise message with the highesbther nodes is broken. At the end of this round, the value
round number, or is any value if the responses reproposed byB (1) is chosen byB itself.
ported no proposals. The second bug we injected (inspired by [4]) involves

4. Upon the receipt of the Accept request, each accept€€ping a promise made by an Acceptor, even after
tor accepts it by broadcasting a Learn message corfrashes and reboots. As pointed in [4], it is often diffi-

taining the Accepted value to the learners, unless i€ult to implement this aspect correctly, especially under
had made a promise to another leader in the meanvarious hardware failures. Hence, we inject an error in

while. the way a promise is kept by not writing it to disk (we

5 By receiving Learn messages from the maiorit ofrefer to it asbug?. To expose this bug we use a scenario
- By g g JOMY Ol milar to the one used fdsugl, with the addition of a

the nodes, a learner considers the reported value as
chosen reset of nodes.

To stress test CrystalBall's ability to avoid inconsis-
The implementation we used was a baseline Maceencies at runtime, we repeat the live scenarios in the
Paxos implementation that includes a minimal set of fea<cluster 200 times (100 times for each bug) while vary-



ing the time between rounds uniformly at random be- 2500
tween 0 and 20 seconds. As we can see in Figure 9,
CrystalBall's execution steering is successful in avoid- 2 2000 |

Cbnsequehce Search on RandTree’

nects and receives checkpoints from other participants.
After running the model checker for 3.3 secondssuc-
cessfully predicts that the scenario in the second roundg 500 r
would result in violation of the safety property, and it
then installs the event filter. The avoidance by execution °5 5 4 6
steering happens whefi rejects the Propose message Depth (levels)
sent byB. Execution steering is more effective fong2

than forbugl, as the former involves resetting. This  Figure 10:The memory consumed by consequence prediction
in turn leaves more time for the model checker to redis{RandTree, depths 7 to 8) fits in an L2 CPU cache.

cover the problem by: i) consequence prediction, or ii)

replaying a previously identified erroneous scenario. Im- BulletPrime (baseline)
mediate safety check engages 25% and 7% of the time, BulletPrime (CrystalBall) -
respectively (in cases when model checking did not have 08|
enough time to uncover the inconsistency), and preventsg

the inconsistency from occurring later, by dropping the £ 06 1

ing the inconsistency at runtime 74% and 89% of the §
time for bugland bug? respectively. In these cases, z 1500 |
CrystalBall starts model checking after no@erecon- 5
= 1000 f
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g
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o
Learn message from at nodeB. CrystalBall could not  § ol
prevent the violation for only 1% and 4% of the runs, re- Sc‘é '
spectively. The cause for these false negatives was the oz |
incompleteness of the set of checkpoints.
4.5 Performance I mpact of CrystalBall %5 50 100 150 200 250

. . d load ti
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cause consequence prediction runs in a separate procq§@ure 11:CrystalBall slows down Bullétby less than 10%
that is most likely mapped to a (.jlffer_ent CPU core 0N, 20 MB file download.
modern processors, we expect little impact on the ser-
vice performance. In addition, since the model checker
does not cache previously visited states (it only stores The average size of a RandTree node checkpoint is
their hashes) the memory is unlikely to become a bottle-176 bytes, while a Chord checkpoint requires 1028 bytes.
neck between the model-checking CPU core and the regiverage per-node bandwidth consumed by checkpoints
of the system. for RandTree and Chord (100-nodes) was 803 bps and
One concern with state exploration such as model8224 bps, respectively. These figures show that over-
checking is the memory consumption. Figure 10 showsdheads introduced by CrystalBall are low. Hence, we did
the consequence prediction memory footprint as a funchot need to enforce any bandwidth limits in these cases.
tion of search depth for our RandTree experiments. AOverhead from Checking Safety Properties. In prac-
expected, the consumed memory increases exponentialtice we did not find the overhead of checking safety prop-
with search depth. However, since the effective Crystal-erties to be a problem because: i) the number of nodes in
Ball's search depth in is less than 7 or 8, the consumed snapshot is small, ii) the most complex of our proper-
memory by the search tree is less than 1MB and can thuses haveO(n?) complexity, wheren is the number of
easily fit in the L2 or L3 (most recently) cache of the nodes, and iii) the state variables fit into L2 cache.
state of the art processors. Having the entire search tre®@verall Impact. Finally, we demonstrate that having
in-cache reduces the access rate to main memory and inGrystalBall monitor a bandwidth-intensive application
proves performance. featuring a non-negligible amount of state such as Bullet
In the deep online debugging mode, the model checkedoes not significantly impact the application’s perfor-
was running for 950 seconds on average in the 100-nodmance. In this experiment, we instructed 49 Buliet
case, and 253 seconds in the 6-node case. When runnisgances to download a 20 MB file. Bullés not a CPU
in the execution steering mode (25 nodes), the modeintensive application, although computing the next block
checker ran for an average of about 10 seconds. Th® request from a sender has to be done quickly. It
checkpointing interval was 10 seconds. is therefore interesting to note that in 34 cases during



this experiment the Bulletode was competing with the 1) it employs an efficient algorithm for model checking
model checker for the Xeon CPU with hyper-threading.from a live state to search for bugs “deeper” and “wider”
Figure 11 shows that in this case using CrystalBall re-than in the live run, and it 2) enables execution steering to
duced performance by less than 5%. Compressed Bulleautomatically prevent previously unidentified bugs from
checkpoints were about 3 kB in size, and the bandwidthmanifesting themselves in a deployed system.

that was used for checkpoints was about 30 Kbps pemModel Checking. Model checking techniques for finite
node (3% of a node’s outbound bandwidth of 1 Mbps).state systems [16, 20] have proved successful in anal-
The reduction in performance is therefore primarily dueysis of concurrent finite state systems, but require the

to the bandwidth consumed by checkpoints. developer to manually abstract the system into a finite-
state model which is accepted as the input to the system.
5 Reated Work Early efforts on explicit-state model checking of C and

C++ implementations [31, 30, 46] have primarily con-

Debugging distributed systems is a notoriously difficult centrated on a single-node view of the system.

and tedious process. Developers typically start by us- MODIST [45] and MaceMC [22] represent the state-
ing an ad-hoc logging technique, coupled with strenuou®f-the-art in model checking distributed system imple-
rounds of writing custom scripts to identify problems. mentations. MODIST [45] is capable of model check-
Several categories of approaches have gone further thang unmodified distributed systems; it orchestrates state
the naive method, and we explain them in more detail inspace exploration across a cluster of machines. MaceMC
the remainder of this section. runs state machines for multiple nodes within the same
Collecting and Analyzing Logs_ Several approaches process, and can determine safety and liveness viola-
(Magpie [2], Pip [34]) have successfully used exten-tions spanning multiple nodes. MaceMC'’s exhaustive
sive logging and off-line analysis to identify performance State exploration algorithm limits in practice the search
problems and correctness issues in distributed systemégepth and the number of nodes that can be checked. In
Unlike these approaches, CrystalBall works on deployedontrast, CrystalBall's consequence prediction allows it
systems, and performs an online analysis of the systertp achieve significantly shorter running times for similar
state. depths, thus enabling it to be deployed at runtime. In
Deter ministic Replay with Predicate Checking. Fri- [22] the authors acknowledge the usefulness of prefix-
day [14] goes one step further than logging to en-based search, where the execution starts from a given
able a gdb-like replay of distributed systems, includingsupplied state. Our work addresses the question of ob-
watch points and checking for global predicates. WiDS-taining prefixes for prefix-based search: we propose to
checker [28] is a similar system that relies on a combi-directly feed into the model checker states as they are
nation of logging/checkpointing to replay recorded runseéncountered in live system execution. Using CrystalBall
and check for user predicate violations. WiDS-checkemwe found bugs in code that was previously debugged in
can also work as a simulator. In contrast to replay-MaceMC and that we were not able to reproduce using
and simulation-based systems, CrystalBall explores adMaceMC’s search. In summary, CrystalBall differs from
ditional states and can steer execution away from erroMODIST and MaceMC by being able to run state space
neous states. exploration from live state. Further, CrystalBall supgort
Online Predicate Checking. Singhet al. [40] have  €xecution steering that enables it to automatically pre-
advocated debugging by online checking of distributedvent the system from entering an erroneous state.
system state. Their approach involves launching queries Cartesian abstraction [1] is a technique for over-
across the distributed system that is described andpproximating state space that treats different state com-
deployed using the OverLog/P2 [40] declarative lan-ponents independently. The independence idea is also
guage/runtime combination. 38 [27] enables develop- present in our consequence prediction, but, unlike over-
ers to specify global predicates which are then automatiapproximating analyses, bugs identified by consequence
cally checked in a deployed distributed system. By usingsearch are guaranteed to be real with respect to the model
binary instrumentation, D3S can work with legacy sys-explored. The idea of disabling certain transitions in
tems. Specializedheckergperform predicate-checking state-space exploration appears in partial-order reatucti
topology on snapshots of the nodes’ states. To mak¢POR) [15],[13]. Our initial investigation suggests that a
the snapshot collection scalable, the checkemapshot POR algorithm takes considerably longer than the con-
neighborhoodcan be manually configured by the devel- sequence prediction algorithm. The advantage of POR
oper. This work has shown that it is feasible to collectis its completeness, but completeness is of second-order
shapshots at runtime and check them against a set @hportance in our case because no complete search can
user-specified properties. CrystalBall advances the-statéerminate in a reasonable amount of time for state spaces
of-the-art in online debugging in two main directions: of distributed system implementations.



Runtime Mechanisms. In the context of operating sys- James Anderson for his help with the Mace Paxos imple-
tems, researchers have proposed mechanisms that safehentation, and Charles Killian for answering questions
re-execute code in a changed environment to avoid erabout MaceMC. Nikola Kngevic was funded in part by
rors [33]. Such mechanisms become difficult to deploya grant from the Hasler foundation (grant 2103).

in the context of distributed systems. Distributed transac
tions are a possible alternative to execution steering, but
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