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ABSTRACT
Energy consumption of the Internet is already substantial and it is likely to
increase as operators deploy faster equipment to handle popular bandwidth-
intensive services, such as streaming and video-on-demand. Existing work
on energy saving considers local adaptation relying primarily on hardware-
based techniques, such as sleeping and rate adaptation. We argue that a
complete solution requires a network-wide approach that works in conjunc-
tion with local measures. However, traditional traffic engineering objectives
do not include energy. This paper presents Energy-Aware Traffic engineer-
ing (EATe), a technique that takes energy consumption into account while
achieving the same traffic rates as the energy-oblivious approaches. EATe
uses a scalable, online technique to spread the load among multiple paths
so as to increase energy savings. Our extensive ns-2 simulations over re-
alistic topologies show that EATe succeeds in moving 21% of the links to
the sleep state, while keeping the same sending rates and being close to
the optimal energy-aware solution. Further, we demonstrate that EATe suc-
cessfully handles changes in traffic load and quickly restores a low overall
energy state. Alternatively, EATe can move links to lower energy levels, re-
sulting in energy savings of 8%. Finally, EATe can succeed in making 16%
of active routers sleep.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.3 [Computer-Communication Networks]: NetworkMan-
agement

General Terms

Algorithms, Design, Management, Experimentation, Performance

Keywords

Energy-Awareness, Traffic Engineering, Online, Distributed

1. INTRODUCTION
Recently, the research community has recognized Internet’s en-

ergy consumption as an important problem. The US network in-
frastructure requires between 5 and 24 TWh/year [20], which trans-
lates into a cost of $0.5-2.4 B/year. Although the networking equip-
ment consumes only a fraction of the total energy used for IT, it

.

is important to reduce the networking devices’ energy consump-
tion to cut energy costs in absolute terms. An additional important
side effect of reduced energy consumption is reduced carbon diox-
ide emissions. Cheaper operating costs will also enable developing
countries to deploy fast networking infrastructure, thereby bringing
important content to more users.

The Internet’s energy consumption is likely to increase as opera-
tors deploy faster, more power-hungry equipment to handle pop-
ular bandwidth-intensive services, such as streaming and video-
on-demand. A large fraction of Internet traffic is generated by
home users, which are currently limited by the asymmetric nature
of ADSL and cable modems that have constrained uplinks. As the
access links become symmetric with 50+ Mbps to home users (e.g.,
fiber-to-the-home), the traffic volume could dramatically increase.
In addition, the cloud computing initiative proposes to locate the
users’ data and computation within the network. If this paradigm
takes root, network traffic is bound to increase even further.

While reducing the energy consumption of network clients [2,
9], servers [13], and switches [7, 9] did receive considerable at-
tention recently, there has been very little effort on reducing the
energy consumption of the Internet backbone. If unattended, how-
ever, the energy consumption of the backbone and the routers lead-
ing to it could well become one of the Internet’s dominant energy
factors. Specifically, at an average access link speed of several tens
of Mbps, the per-user power consumption of the core exceeds that
of the access and metro links combined [22]. Since the power con-
sumption of the router hardware greatly surpasses that of the op-
tical equipment[22], we concentrate on saving the energy that is
consumed by the routers and their line cards.

Network devices expend large amounts of energy even when
they are idle or underutilized [3], and this problem is exacerbated
by the need to overprovision the network to reduce jitter and packet
loss. Complementary metal oxide semiconductor (CMOS) technol-
ogy is reaching a plateau in power-efficiency [3], and the cooling
costs of new equipment are also likely to increase. Finally, it is
likely that energy costs will continue to rise, which will make the
problem even worse.

Gupta et al. [10] suggest to save energy by putting network inter-
faces and other routers and switches to sleep, but do not present an
actual network-wide algorithm. Existing work on energy saving
considers local adaptation using primarily hardware-based tech-
niques, such as sleeping and rate adaptation. Nedevschi et al. [20]
propose two energy saving schemes. The first shapes traffic into
small bursts at the edge routers to enable downstream line cards to
sleep between two packet bursts. The second takes advantage of
the fact that a device operating at a lower frequency and/or voltage
can achieve a significant reduction in energy consumption. Their
results argue for a few, uniformly distributed operating rates for



line cards. The latter approach is an important step toward energy-
proportional networking hardware.
We argue that a complete solution requires a network-wide ap-

proach working in conjunction with local measures. The classic
traffic engineering problem is already difficult as it has to counter
short-term changes in traffic volume with quick decisions to shift
traffic within the network in order to balance link utilization. Fur-
ther, the algorithm should be stable even under frequent changes
in traffic patterns that might lead to oscillations. Finally, adding
energy-efficiency only makes the problem harder. For instance, an
interface card or a router that is powered off might affect other de-
vices in its neighborhood by, e.g., waking them up. Moreover, fre-
quent changes in the operating rate of energy-proportional network-
ing hardware can result in unnecessary packet delays and losses. In
addition, although an optimal decision could potentially be derived
using global information, such an approach is less likely to be de-
ployed. Hence, we seek a scalable solution in which routers take
independent decisions.
This paper presents Energy-Aware Traffic Engineering (EATe), a

technique that takes energy consumption into account while achiev-
ing the same traffic rates between sour-ces and destinations as the
energy-oblivious approaches. We assume a hardware model in
which an interface can operate at various sending rates. EATe uses
a scalable, stable, online technique to spread the load among mul-
tiple paths so as to increase energy savings.
While EATe can handle router hardware with a wide range of

energy characteristics, we explore in detail two important points in
the design space of future routers with hardware-based support for
energy-saving. Our first algorithm assumes low idle power con-
sumption and good ability to save energy across the link capacity.
In this scheme, we shift links to lower energy regions while being
careful not to move the corresponding links on the alternative paths
to higher energy levels. We also explore an alternative model in
which rate adaptation provides modest benefits and the idle con-
sumption of the network element is relatively high. Here, we strive
to remove traffic from as many links as we can to let them enter
a sleep state. A related option is to make a concentrated effort to
remove traffic altogether from routers and enable the entire chassis
(in addition to line cards) to sleep.
In EATe, every source makes an independent, local decision based

on the information it collects from its paths to the possible des-
tinations. We therefore do not require excessive control traffic to
achieve our goal. Because EATe is aware of different hardware op-
erating rates and carefully controls the amount of traffic sent over
the links, it dramatically reduces the number of energy-wasting
changes between the rates that also have negative impact on per-
formance.
Our extensive ns-2 simulations over realistic topologies show

that EATe succeeds in moving 15-31% of the links (21% on av-
erage) to the sleep state, while keeping the same sending rates
and being close to the optimal energy-aware solution. Further, we
demonstrate that EATe successfully handles changes in traffic load
and quickly restores a low overall energy state. We also show that
EATe quickly moves traffic after link failure. On more energy-
proportional hardware, EATe can move links to lower energy lev-
els, resulting in average energy savings of 8%. Alternatively, EATe
can succeed in making 10-24% (16% on average) of active routers
sleep.

2. BACKGROUND

2.1 Hardware support for energy-saving
Networking hardware typically contains a chassis that consumes

power whenever the device is turned on. One or more network el-
ements (e.g., line cards) can be plugged in, and they each consume
power even when they are not carrying traffic. A comprehensive
characterization of power consumption by a variety of network de-
vices is presented here [18]. In this section, we briefly describe
energy saving features that are likely to be supported by future net-
working hardware [20]. As the Internet continues its exponential
growth, the line rates will increase, and so will the networking el-
ements’ power consumption (for example, going from 1 Gbps to
10 Gbps resulted in a jump from 4 W to 20 W for Ethernet cards).
These energy saving features can leverage readily available, proven
technologies, such as sleep states, as well as frequency and voltage
scaling that are widely in PCs. With a prototype already demon-
strated [19], we believe that these features will be implemented in
commercial networking equipment in the near future.
Sleeping. Modern processors typically include a number of states
that enable various components to sleep, along with a penalty in
the form of an increasing time needed to return from those states
(e.g., C-states in Intel processors [1]). For the sake of simplicity,
we assume the existence of one sleep state. As in [20], we assume
that the time to enter the sleep state and return from it is as short
as few tens of milliseconds, given the characteristics of some of the
proposed hardware [11]. The work in [20] explores the benefits of
a technique in which packets are batched together and delayed, in
an effort to provide a “downstream” network element with more
time to spend in a sleep state. It is however difficult to keep such an
element in a sleep state because the packets cannot be indefinitely
buffered. We believe that this points to a need for the network-wide
solution.

A chassis with line cards that are all “sleeping” should also be
able to enter a sleep mode. Doing so can bring about significant
energy savings as the chassis and the necessary cards (excluding
line cards) can consume one half of the router’s maximum energy
budget [3]. Removing traffic from all router’s line cards requires a
network-wide solution.
Rate adaptation. We also assume that frequency change and Dy-
namic Voltage Scaling (DVS) [25], some of techniques that have
been successfully applied to general purpose processors (P-states
in Intel processors [1]), could be implemented as well in the net-
working hardware. Of these two, DVS is particularly appealing
given that reducing the voltage has a dramatic effect (quadratic de-
crease) on energy consumption. These techniques could be used
to make the energy consumption of the network element propor-
tional to its operating rate. The following equation defines the
active power consumption as a function of its operating rate r:
pa(r) = C + fr(r). C captures the static amount of power that
is consumed regardless of the operating rate, and fr() captures the
way power grows as the operating rate r increases. Nedevschi et al.
[20] explore the potential savings of hardware capable of support-
ing N performance states, each corresponding to a different link
rate: r1, r2, . . . , rN . Their results show that a uniform distribu-
tion of operating rates yields superior energy savings relative to an
exponential distribution. These authors also develop practical tech-
niques that can match the operating rate to the link utilization, at
the expense of introducing a small, bounded delay.
Network-wide Impact. To summarize, we assume that the hard-
ware is capable of automatically adjusting its operating rate to match
its utilization, and that it can sleep whenever there is an opportunity.
The techniques we described so far (sleeping and rate adaptation)
can be characterized as local. We now turn our attention to the po-
tential for energy savings made possible by taking network-wide
information into account.

It is difficult to estimate what the values and properties of the
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Figure 1: A case in which sleeping results in greater savings

than adaptation, because the baseline consumption is relatively

high and adaptation brings modest benefits.
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Figure 2: A case in which rate adaptation is preferable to

sleeping, because large savings are possible with rate adap-

tation and baseline consumption is low.

various parameters (e.g., C) and functions (e.g.,fr()), respectively,
will be in the future hardware. We therefore concentrate on two
characteristic cases located at the end points of the design spectrum,
and depict them in Figures 1 and 2, which illustrate the predicted
power consumption of a network element as a function of its load.
These figures also show the three different operating rates that the
element can use to match the offered load, in an effort to reduce the
energy consumption.
High values of C , coupled with small or nonexistent savings due

to frequency rate changes, would motivate the network operator
to keep as few links active as possible (Figure 1). On the other
hand, low values of C , along with the substantial savings that are
possible from rate adaptation, would motivate the network operator
to carefully load balance the network’s link utilization (Figure 2).
The algorithms we developed are motivated by these findings,

but they handle other cases in the spectrum of hardware character-
istics (we discuss this further in Section 3.6).

2.2 Problem definition
The problem we wish to address can be described and parame-

terized as follows. There exists a set Z of source-destination pairs
(i), which we refer to as sources and denote as zi. The capacity of
a link l is cl, while its utilization is yl. Multiple paths exist for each
source-destination pair, and the matrix entry element Hi

lj is 1 if a

source zi uses the link l on a path j at its disposal (0, otherwise).
Thus, zi

j represents the amount of traffic sent over j-th path for zi.
The problem at hand can now be stated as follows: given the

sending rates at traffic sources our goal is to insure that all traffic
reach its intended destination while using the minimal amount of
energy for that task. Additionally, we cannot exceed any given link
capacities. Equation 1 formally states the problem.

minimize
P

l e(yl, cl)

subject to y < c, yl =
P

i

P

j
Hi

ljz
i
j , ∀l

z = s, zi =
P

j
zi

j ,∀i (1)

3. APPROACH
In this section, we describe the way in which EATe finds a so-

lution for Equation 1, while leveraging future hardware that can
achieve considerable energy savings by adjusting its operating rate.
For hardware that is likely to be deployed in the near future (Section
2.1), the energy consumption function e(x) is not convex and it is
not doubly-differentiable (e.g., Figure 2)1. Thus, we cannot easily

1“Convexifying” the non-convex objective in the problem formu-

solve this problem using traditional techniques. The problem can
be formulated as mixed-integer programming, which is known to
be NP-hard. Generally, mixed-integer problems are solved using
heuristics such as branch-and-bound, cut generation, etc. However,
none of these heuristics meets all challenges faced by a traffic man-
agement algorithm:

Efficiency. Any computationally- or memory-intensive task placed
in a router’s critical path would jeopardize the protocol’s deploy-
ment. Thus, we seek an efficient solution, with small computational
and memory requirements.

Responsiveness. Relying on a central authority to solve the
problem is not possible given the computational power of existing
hardware. For instance, in [3] the authors show that it takes a few
hours to solve the problem by using an existing offline algorithm
with full network information. We seek responsiveness, which can
only be provided by an online algorithm.

Scalability. Although it is tempting to try to gather global net-
work information, such an approach would not scale due to the need
for a high update rate from each router (several times a second), and
to the sheer messaging complexity.

Stability. Instability would lead to frequent changes in operat-
ing rates. This is undesirable for two reasons. First, it takes a sig-
nificant amount of energy to switch between two operating rates.
Second, a network element might not be able to serve the packets
while it is switching rates, which could lead to packet loss and a
further increase in latency.

EATe meets this requirements by relying on a fully distributed,
online algorithm in which each intermediate router periodically re-
ports its link utilization, while edge routers, based on this informa-
tion, distribute traffic across alternative paths in a way that maxi-
mizes energy saving. Traffic distribution is done in a stable fashion
to prevent unnecessary changes in rate operation.

EATe assumes the existence of multiple paths between any source-
destination pair (alternatively called ingress and egress). These
paths can either be precomputed off-line, or determined at runtime
by the routing protocol. We do not require the paths to be disjoint.
Since alternative paths are necessary for ISP’s ability to tolerate
link and router failures, they are likely to exist in their topologies.
In the evaluation (Section 4), we show that the ISP topologies in-
deed have a sufficient degree of redundancy for our protocol’s op-
eration.

lation might remove the requirement of dealing with the mixed-
integer programming problem. However, such an approach could
miss opportunities for energy saving or push links to higher oper-
ating rates, as it might not be able to carefully observe the discrete
power levels of the rate-adaptation capable hardware.
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Figure 3: An example superimposing the link utilization dis-

tribution (before EATe runs) on the curve relating energy con-

sumption and link load.

3.1 Leveraging rate adaptation
Next, we describe how EATe leverages the hardware-based en-

ergy improvements described in Figure 2. In this environment, it
is expected that the ISPs would want to make full use of the hard-
ware’s rate adaptation characteristics. The baseline traffic manage-
ment algorithm does however not take hardware properties into ac-
count, and it is thus likely that some links would lie close to a lower
operating rate (within the drop margin dm, Figure 3). Our idea is to
shift the load from these links (“triangles”) to other links on alter-
native paths for the same source-destination pair (“circles”), while
being careful not to move these links into a higher energy state.
The drop margin plays an important role in preventing simul-

taneous adjustments that could preclude energy savings. Suppose
that we can shift traffic from any link, regardless of its distance
from the lower operating rate. Consider two links that are fairly
distant from the lower operating rate. We might end up moving
both of them only half-way, without fully succeeding for either one
of them. Alternatively, a link might end up absorbing additional
traffic in a way that precludes its own transition to a lower operat-
ing rate. We use the drop margin to help us select the appropriate
number of links that we will attempt to move so as to maximize
energy savings. The details on how we determine the drop margin
are presented in Section 3.5.

Xi = −
X

M(zi
j
)>0

∆zi
j (2)

Bi = |{zi
j |M(zi

j) = 0}|

∆zi
j =

(

−M(zi
j) ∗ zi

j M(zi
j) > 0;

Xi/Bi M(zi
j) = 0;

(3)

M(zi
j) =

(

min
l

(wl) Hi
lj = 1 ∧ wl < dm;

0 otherwise;

wl = (yl − R(RI(yl) − 1)))/yl
X

j

∆(zi
j) = 0,∀i (4)

The EATe algorithm (Equations 2-4) that leverages rate starts by
collecting information about links that are the best candidates for
having their traffic removed. A router will mark the paths that fea-
ture links lying close to the lower operating rate by inserting their
distance (wl) from the closest lower operating rate, normalized by
its current utilization. Figure 3 depicts such links with triangles.
Since EATe tends to move links that are closest to the lower rate, an
intermediate router will rewrite the distance only if it has a lower

value to report, as depicted in Figure 3 (w1 < w2). To compute
the normalized distance (wl), intermediate routers use the function
RI(yl) to determine the energy state’s index that can handle the
load yl, while the function R(x) retrieves the operating rate for the
energy state index x. The destination will report back to the source
the amount of traffic that has to be removed (min(wl)) in order to
move a link to a lower energy level. The intuition behind using the
normalized distance is that it represents the fraction of traffic that
each flow passing over the link needs to remove to enable the link
to operate in a lower energy state.

Next, the sources attempt to shift the traffic away from the candi-
date links. An edge router computes periodically (every maximum
RTT for all paths it sees) a change in traffic ∆zi

j as shown in Equa-
tion 3. If a path passes over a link which is a candidate for moving
to a lower energy state, the source is supposed to decrease the traf-
fic proportionally to the link’s normalized distance from the lower
level. Further, Bi is the number of paths that can absorb additional
load without increasing their energy levels, while theXi is the traf-
fic which should be spread evenly among these paths. It is worth
noting that all decisions are taken locally. Finally, Equation 4 en-
sures that the sending rates are kept constant.

Although the general idea sketched above looks straightforward,
there are a few points worth discussing. Equation 2 assumes that
there is enough spare bandwidth on alternative paths to absorb ad-
ditional load without moving one of their links to higher energy
levels. However, this is not always the case. Sometimes, it takes
more than one round for some links to be moved to the lower energy
level, and some of them never get to be moved. A link’s chances
depend on the spare bandwidth present on alternative paths (Ai

j),
which we discuss in Section 3.4.

3.2 Leveraging sleeping of links
As depicted in Figure 1, it is possible that future hardware will

feature a high value of C (high baseline power consumption) and
small savings from adjusting the operating rate. Specifically, since
implementing the logic for putting a network element to “sleep” is
easier and less expensive than sophisticated scaling techniques, it
is likely that the first power-aware networking hardware generation
will feature only the sleep functionality. In this case, a traffic engi-
neering algorithm should aim to aggregate traffic on as few links as
possible, to allow the rest of the links to sleep. In this section, we
show how EATe accomplishes this goal.

M(zi
j) =

8

>

<

>

:

1 Hi
lj = 1 ∧ yl < dm;

−1 Hi
lj = 1 ∧ yl > Ub;

0 otherwise;

(5)

Intuitively, in this scenario EATe tries to push as many links as
possible into a sleep mode, while observing two boundary condi-
tions. First, EATe is not allowed to increase the maximum link uti-
lization determined by an ISP. Second, the energy states between
sleeping (utilization of 0) and the bottleneck link utilization are
considered as one large energy level. In this case EATe does not
need to worry about operating rate adaptations, because potential
benefits would likely be marginal (Figure 1). This enables EATe
to increase the number of links that are capable of absorbing addi-
tional load without significantly affecting the overall energy con-
sumption. EATe’s equations are similar to those from previous sec-
tion except packet marking M(). It is shown in Equation 5, where
Ub represents the upper bound on link utilization. An ISP might
decide to set Ub to a lower value to be able to accommodate a sig-
nificant increase in traffic demand without activating links that are
sleeping. On the other hand, if the ISP’s goal is to maximize the
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Figure 4: EATe in action with two edge routers (RB and RC )

simultaneously attempting to move traffic from links RI − RJ

and RN − RY onto the same link (RK − RL). Router RK uses

forward announcements and an XCP-like controller to com-

pute explicit feedback for each source to prevent overshooting

the target utilization.

number of inactive links when EATe takes control, it would set Ub

to a higher value to maximize opportunity for traffic aggregation.

3.3 Leveraging sleeping of routers
It is well known that the chassis of a router consumes power even

if just one of its links is active. Thus, the third technique we use in
EATe seeks to shift traffic away from all links belonging to a router,
enabling the entire chassis to sleep. Here, we assume that control-
plane protocols could be modified to allow routers to stay in a sleep
state for longer periods of time. The mechanism we use is similar
to the one for putting links to sleep. An important change is in the
value that is reported during the collect phase. Each intermediate
router adds up the link utilization of its links and reports the sum
to each source that sends traffic through it. Each source then shifts
as much traffic as it can from the router with the smallest aggregate
utilization it knows about. Thus, if we imagine the algorithm op-
erating over a set of rounds (each equal to the maximum RTT), in
each round the router with the smallest aggregate utilization ”wins“
the right to have all its traffic removed.

3.4 Ensuring stability
While shifting traffic from one link to another, we face the fol-

lowing fundamental problem: how do we ensure that two or more
sources, which are simultaneouslymaking independent adjustments,
do not inadvertently increase the utilization of the target link be-
yond its desired level? If we do not prevent this from happening,
we might experience 1) oscillations, when the sources move traffic
from the “offending” link back to the original set of links, and back
again [16], 2) unnecessary packet loss, and 3) wasted energy due
to rate changes. We refer to this problem as the one of ensuring
stability. Figure 4 shows one such scenario, in which the sources
RB and RC simultaneously shift traffic from the top and bottom
paths onto link RK − RL.
We ensure stability by using explicit feedback from intermediate

routers. Specifically, the sources announce their intent to shift traf-
fic on select paths (step 2 in Figure 4). Within these paths, routers
count the number of announcements (n) in an interval of Tp sec-
onds (max RTT). Each router then computes the slack (R(RI(yl))−
yl) until the next higher operating rate, given the current utilization
of its link on the path. In addition, the router takes the queue size
(Q) into account, computes the amount of new load it is willing

to accept on the link (Φ), and spreads it across the set of sources
that announced their intent to move traffic onto the link. Strictly
taking the full slack and dividing it by the number of flows could
cause oscillations due to traffic changes. Thus, we need a controller
that is stable. One such controller is the one used in XCP [15] and
TeXCP [14]. We adapt this controller for our needs, and compute
the aggregate feedback Φ as follows:

Φ = αx · Tp · (R(RI(yl)) − yl) − βx · Q (6)

where αx and βx are constants chosen in a way that ensures stabil-
ity [15]. If Φ > 0, Ai

j = Φ/n is the per-source feedback (step 3

of Figure 4). Therefore, we extend Equation 3 by bounding ∆zi
j to

Ai
j .

3.5 Selecting the drop margin
EATe is sensitive to the drop margin (dm) parameter. The drop

margin implicitly determines the number of links that EATe tries to
push to lower energy levels (“triangles” in Figure 3). Too small a
number would lead to very few drop candidates, i.e., links ready to
be pushed to lower operating rates. On the other hand, choosing
too large a drop margin would decrease the number of alternative
paths (“circles” in Figure 3). Setting the proper value of the drop
margin is therefore an important challenge.

We used the following analysis to derive the drop margin value
for our experiments. First, we assume that the link utilizationwithin
two adjacent energy levels is uniformly distributed. Then, we also
assume that the links that are willing to accept additional load with-
out sacrificing energy consumption will take an equal share of the
aggregate traffic that is going to be shifted from the links which are
within the drop margin. In this case, we have:

Ldown = dm ∗ N

Tshift = dm
2/2N ∗ (R(i + 1) − R(i))

Lup = dm
2/(2 ∗ (1 − dm)) ∗ N

Esavings = Ldown − Lup (7)

Ldown represents the number of links that we want to push to
the lower energy levels, with N being the total number of links
in the network. The aggregate traffic that is going to be shifted
is Tshift, while the number of links that will go to higher energy
levels in return is Lup. Finally, we maximize Esavings by first
differentiating Equation 7. Solving the resulting equation for the
optimal dm value yields 0.42.

3.6 Deployment issues
Collecting and disseminating information. Tomaximize the pro-
tocol’s deployment chances, it is important to minimize the changes
that are required in existing packet headers and protocol implemen-
tations. Collect messages need to be able to carry the smallest link
“waste” (normalized distance to lower operating rate). In case of
routers that need to sleep, these messages need to carry the ag-
gregate router utilization. EATe edge routers need to be able to
announce their intention to shift traffic on a given link. In ad-
dition, EATe core routers need to be able to send back explicit
feedback containing the amount of load that can be shifted onto
their links. Finally, the edge routers need to determine the max-
imum RTT (and set Tp, the interval between traffic adjustments,
to that value). While EATe could use separate packets to transmit
the rates, the max RTT, and the feedback (as in TeXCP [14]), we
believe that it might be possible to transmit the required informa-
tion by marking bits in the packet header , e.g., by leveraging a
recently proposed framework for deploying explicit feedback con-
gestion control protocols [24].



The core routers themselves would require only small chan-ges.
First, they would have to track the utilization of every link, which
should not be difficult. Second, they should count the number of
sources that are interested in shifting traffic onto each of their links.
The counting process lasts for a limited time interval, and should
therefore not pose a problem. The edge routers would have to run
a more complex algorithm that decides how to balance the load
among paths. However, this is in accordance with the current In-
ternet practice in which edge routers are allowed to be more intel-
ligent, at the expense of slower packet forwarding rates.
Hardware characteristics. By letting the routers decide the type
of explicit feedback they provide, EATe easily accommodates het-
erogeneous equipment (different link speeds, number of operating
rates, and number of links at the routers). In addition, EATe can
easily adapt its policy for picking candidates that are to be moved
to the lower energy levels for various network devices (character-
ized by the different C parameter and the fr() rate-based power
consumption function. In essence, the routers would simply prefer
links whose potential for energy savings is larger. For example, in
the case of hardware with significant savings due to rate adaptation
and large C , EATe would prioritize shifting down the links that are
in the leftmost and the rightmost regions in Figure 3.
Scope of deployment. EATe is perhaps best suited for traffic man-
agement within an ISP, where there is a sufficient amount of trust
among the routers. EATe does not change ingress or egress points
for any source-destination pair, and it does not change the amount
of traffic entering and leaving the ISPs network; hence, EATe does
not affect the ISP preference for one egress for a particular set of
source-destination pairs over others. Finally, EATe balances traffic
only across paths that are given to it by the routing algorithm.
EATe could be used in wider deployments, e.g., involving the

endhosts, if the protocol endpoints can be trusted to send traffic at
the calculated rate. Not all protocol participants would have to be
aware of the multiple paths, though, as the edge routers could shape
the traffic on behalf of other participants.
Impact on reliability. EATe does not affect the time to detect fail-
ure, and it does not interfere with any lower level failover mecha-
nisms (e.g., SONET). However, EATe might need time to: 1) wake
up any target links (traffic recipients) that might be sleeping and 2)
shift traffic toward them. We explore this aspect in our evaluation.
Impact on latency. Besides achieving significant power savings,
EATe should ensure that all client traffic meets the relevant service
level objectives (SLOs). Details about the trade-off between power
savings and latency under different network utilization is available
here [23]. In short, the impact of traffic aggregation on latency is
negligible at low utilization levels (up to 40%) which is a maximum
operating region for most ISPs [6]. Our discussions with an ISP in
Europe reveal that link utilization is kept around 20% so that, even
under failure, no link utilization goes above 40%. This is one more
reason why EATe’s impact on latency should be small. In any case,
the ISPs can control the maximum link utilization by changing the
Ub parameter as explained in Section 3.2.

4. EVALUATION
Our experimental evaluation addresses the following questions:

1) Can EATe save energy using different network hardware and
achieve low aggregate link utilization, without affecting the send-
ing rates? 2) Is EATe stable under changing traffic demands? 3)

How far is EATe from an optimal solution? 4) Is EATe’s impact on
network reliability acceptable?

4.1 Experimental setup
As the aforementioned power-saving features have not yet been

ISP Cities Links Flows Max

paths

Avg

paths

Abovenet 19 68 20 5 3

AT&T 115 296 50 6 3.72

Genuity 42 110 30 4 3.27

Sprint 52 168 50 8 4.5

Tiscali 41 174 50 10 4.44

Table 1: Summary of Rocketfuel ISP topologies

implemented in commercial routers, we primarily use ns-2 simula-
tions to explore the benefits of our approach on small- and large-
scale topologies. Our baseline is the TRUMP [12] code, which
presents the state of the art in traffic management. The goal was to
demonstrate EATe’s savings against a traditional (energy-agnostic)
TE algorithm. The experimental setup is summarized in the fol-
lowing.
Topologies. We run our algorithm on the ISP topologies pub-
lished by the Rocketfuel project[21]. Table 1 summarizes these
topologies, listing for each the number of links, flows, and alter-
native paths for any given source-destination pair. The alternative
paths are computed by choosing several intermediate points in the
network, patching together the corresponding shortest paths, and
choosing the set of paths which results in the highest degree of
edge disjointness.

We leave the link latencies as determined by the Rocketfuel map-
ping engine. These topologies do not originally have link capacities
assigned. We keep the values chosen in [12]: links are assigned 100
Mbps if they are connected to an end point with a degree of less
than seven, otherwise they are assigned 52 Mbps. These settings
mimic the reality in which core routers have fewer links that are
running at higher speeds, relative to other routers in the topology.
Future hardware. We run all experiments under the assump-
tion that each link is capable of operating in one of four uniformly
distributed operating rates (this was the number of rates used in
[20]). In rate adaptation experiments, we assume the use of hard-
ware capable of frequency and dynamic voltage scaling, leading
to quadratic energy savings between different rates. We also as-
sume that the hardware can automatically adjust the operating rate
to match the offered load. Thus, the savings we report are on top
of those that are possible with local adaptation when it is applied to
the results obtained by first running TRUMP.
Traffic matrix. In each major category of experiments we run
11 simulations, varying the values of the TRUMP parameter w be-
tween 0.5 to 1.0. The parameter w is used to control the trade-off
between the users’ and the operators’ goals (the higher w, the more
preference TRUMP gives to the operators’ goals). Typically, higher
values are needed to ensure TRUMP’s convergence, which is why
we start from w = 0.5. Different values of w result in different sets
of active links and in different link utilization distributions. In addi-
tion, different values of w cause TRUMP to choose different sets of
per-host sending rates. Thus, by varying w, we effectively subject
EATe to 11 different traffic matrices for each of the 5 topologies.
The details of the traffic presented to TRUMP are similar to those
used to evaluate TRUMP itself [12]. While we leave more sophis-
ticated traffic generation (e.g., as in REPLEX [5]) for future work,
we believe that the traffic demands that we impose upon TRUMP,
and indirectly upon EATe via the traffic that is admitted by TRUMP
(e.g., Figure 5(b)), are adequate to illustrate the energy savings that
will be attainable.
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(a) Percentage of links made inactive state
(relative to active links before EATe’s run).
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Figure 5: EATe’s performance when moving links to the inactive state.

4.2 Leveraging sleeping of links
In the first set of experiments, we explore the performance of

EATe when it tries to leverage the sleep mode of future line cards
(Section 3.2).
Figure 5(a) shows that EATe completely removes traffic, aver-

aged over 11 values ofw (error bars represent confidence intervals),
from 15-31% of the links (21% on average) that were active after
TRUMP’s completion, while keeping the sending rates at the same
level. These links can enter a sleep state and would in fact remain
sleeping (because the sources would not be directing traffic towards
them), unless there were significant changes in the traffic volume.
Figure 5(b) shows a CDF of sending rates (traffic matrix) for data
source-destination pairs in this experiment and confirms that EATe
preserves the throughput levels set by TRUMP.
These results show that EATe can effectively use a straightfor-

ward energy-saving feature such as the sleep mode, which is likely
to appear soon in the networking hardware. In today’s hardware,
the ratio between idle and maximum power is high (e.g., 0.8 [3]).
Thus, a vast majority of the achieved percentage of sleeping links
would materialize as real energy savings. For example, if we take
power consumption figures for existing popular hardware from [3]
(an OC-48 card consumes 70W in the idle state, and approximately
an additional 15Wwhen it is transmitting at its maximum rate), and
apply them to the link utilizations in a representative topology (Tis-
cali, with 30% additional links sleeping), we observe a substantial
net energy reduction of 28%.
EATe produces consistently better savings on Tiscali than it does

on the rest of the topologies. This topology offers a large number
of alternative paths to absorb traffic from any given link, thereby
providing EATe with more opportunities to completely shift traffic
away from a larger number of paths (and links). Abovenet does not
offer many alternatives (40% of paths have no alternative choice),
which explains why in this case the savings are smaller than on the
rest of the topologies.
Figure 5(c) shows a CDF of the normalized link utilization, for

the Tiscali topology, before and after EATe runs (the rest of the
topologies are qualitatively similar). Apart from clearly showing
the links that have all traffic removed (on the Y axis), this figure in-
dicates that EATe did not significantly perturb the link utilizations,
and did not make dramatic increases to accomplish this task.
Finally, we compare EATe’s performance to the optimal, off-line

solution. In order to compute the optimal number of links that need
to remain active, we feed the source-destination pairs, the sending
rates, and the topology to a mixed-integer programming problem
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Figure 6: EATe’s ability to move links to the inactive state is

close to optimal.

formulated in MATLAB. Due to time constraints, we run these ex-
periments for only one value of w. As Figure 6 demonstrates, EATe
is within 15% of the optimal solution. We did not have sufficient
time to observe the results for larger topologies; this is consistent
with previously reported experiences [3].

4.2.1 Stability under traffic changes

To demonstrate EATe’s stability and the ability to handle re-
peated changes in the traffic volume, we start an experiment in the
Abovenet topology with 20 source-destination pairs and w = 0.55.
Figure 7(a) shows how the aggregate sending rates and the number
of active links vary over time. EATe makes only a small number of
changes to power states of the links after it starts running at t = 6
seconds, further reducing the energy consumption (shown on the
Y2 axis) relative to the non-energy aware approach. In addition,
EATe quickly converges and keeps the number of active links sta-
ble. Figure 7(b) shows the CDF of convergence time for the links
that are moved to the inactive state. The figure depicts that EATe
takes only 10 RTTs for 50% of the links, and around 50 RTTs for
all of the links to enter the inactive state.

Starting at t = 8 seconds (Figure 7(a)), we stress EATe by re-
peatedly changing the traffic volume every second. Specifically, we
increase or decrease the traffic demands by a random amount that is
up to 50% of the original traffic allowed by TRUMP. EATe’s strat-
egy is to accommodate as much traffic as possible by using the cur-
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Figure 7: Experiments in the Abovenet topology with sleeping of links under traffic changes and link failure.

rently active links, and to wake up some of the sleeping links only
if it is necessary. Accordingly, EATe can increase the number of
the sleeping links if that traffic volume decreases sufficiently. This
experiment shows that EATe can quickly: 1) deal with dramatic
changes in the traffic demand with few or no changes in the num-
ber of active links, and 2) reach a stable point even under changing
traffic demands.

4.2.2 Handling link failures

To demonstrate that EATe does not significantly affect network
reliability, we conduct an experiment in the Abovenet topology in-
volving link failure. Figure 7(c) shows the traffic originating from
one particular source (4) across four alternative paths. Once EATe
starts running at t = 6 seconds, it consolidates traffic originat-
ing from three paths onto a path labeled 4-4 without changing the
sending rate. At t = 7 seconds we fail a link on this path. We then
observe that EATe quickly moves the affected traffic onto another
alternative path (in this case 4-2), with small amount of packet loss.
We note that it is likely that any other online traffic engineering al-
gorithmwould also lose the packets traveling over the affected path.
Here we assume that it takes 100 ms for the link failure informa-
tion to propagate to the sources, and 10 ms to wake up a target link
(upper bound on the estimate in [20]).

4.3 Leveraging sleeping of routers
In this set of experiments we explore EATe’s ability to remove

traffic from links in a way that maximizes the number of routers
with no traffic, and enables them to enter a sleep state (Section
3.3). After TRUMP’s run, only a small fraction of routers ends
up unused. Figure 8(a) shows that EATe succeeds in enabling to
sleep an additional 10-24% (16% on average) of the routers that
were active before EATe, while keeping the sending rates at the
level determined by TRUMP. In the absence of significant changes
in traffic, EATe will keep traffic away from these routers, allowing
them to remain sleeping.
Figure 8(b) shows that EATe puts routers to sleep by making

small overall changes in link utilization (shown is the Tiscali topol-
ogy; EATe behaves similarly on the other topologies). We also
compute the router utilization as a sum of the attached link uti-
lizations. Figure 8(c) shows the router utilization before and af-
ter EATe. Although each source ranks routers independently and
makes a local traffic-shifting decision, routers with a utilization
level close to 0 (the area of interest is in the lower left part of the
graph) end up in having all their traffic removed. We also see that
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Figure 9: Energy savings by moving links to lower energy levels

when rate adaptation is preferred.

EATe does not significantly increase the utilization of routers that
remain active. Therefore, we expect the actual energy savings to be
close to the fraction of routers that went to sleep.

4.4 Leveraging rate adaptation
Next, we examine EATe’s performance on more sophisticated

future hardware that will waste little energy while idle, and will be
able to vary the operating rate to match the offered load. Figure
9 depicts the energy savings in the Rocketfuel study topologies,
while the sending rates are kept constant. Computing the actual
energy savings is difficult because the hardware does not yet exist,
but to get a general idea of the possible savings, we apply values
to our model that are similar to those in [20]. We assume that fre-
quency and Dynamic Voltage Scaling are in place, but that due to
various artifacts they result in quadratic savings between two adja-
cent operating rates. In addition, we assume that a line card wastes
an additional 20% of its maximum power due to intrinsic hardware
losses. With these settings, we can see from Figure 9 that the aver-
age energy savings are 8%.

Figure 10 zooms in on the behavior of EATe on one represen-
tative topology (Tiscali) and shows a CDF of the link utilization
before and after EATe runs. The artifacts due to EATe’s adjust-
ments manifest themselves as jumps in the number of links that
have utilizations just short of the next discrete rate, as intended.
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(b) CDF of the normalized link utilization
before and after EATe (Tiscali topology).
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Figure 8: EATe’s performance when moving routers to the inactive state by removing traffic from all their links.
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Figure 10: CDF of link utilization before and after EATe suc-

ceeds in moving links to lower energy levels (Tiscali topology,

w = 0.65). Vertical bars correspond to distinct operating rates

supported by the hardware.

The flat parts in the CDF right after the discrete operating rates
(denoted by vertical lines) represent an evidence that EATe suc-
cessfully pushes down links that are close to lower operating rates.
EATe’s energy savings exhibit high variance for different values of
w for all topologies. The cause for this behavior is the power char-
acteristic of the model (quadratic savings between two adjacent op-
erating rates) and the differences in post-TRUMP link utilizations.
EATe gains the most when it shifts a link from the highest setting to
the next lower level. In the case shown, there were not many links
at the highest rate that could be moved down.
Relative savings among the topologies are similar to those for

the case of sleeping links, and can be explained by the number of
alternative paths that are available for each link.
In this case, EATe’s savings are smaller than in the case of mov-

ing links to a sleep state because the hardware which uses rate-
adaptation is closer to the ideal goal of power-proportionality. Nev-
ertheless, EATe achieves considerable savings by using a network-
wide online approach. EATe makes a small number of changes to
the power states of the links. Most importantly, in the absence of
significant traffic changes EATe keeps links in their chosen power
states and avoids costly switchings between different operating rates.

5. RELATEDWORK
Gupta at al. [10] were the first to raise the issue of the poten-

tial energy/power savings in the wired Internet. To the best of
our knowledge, our work is the first embodiment of their vision
of network-wide coordinated sleeping. The problem of managing
energy consumption costs in desktop PCs [2] and LAN switches [7,
9] was the first to receive attention. There has also been work on
Adaptive Link Rate (ALR) for Ethernet [8].

Chabarek at al. [3] have recently argued for power awareness
in network design and routing. They conduct valuable experiments
with popular routers and create a router power consumption model.
They then proceed to apply this model in realistic network config-
urations and use mixed-integer optimization techniques to reduce
power consumption while preserving a good network performance.
They report running times of a few hours for their off-line approach,
and its inability to complete for two realistic topologies. Similarly,
Chiaraviglio et al. [4] try to determine the minimum set of routers
and links that can accommodate a given traffic demand. However,
the paper does not discuss how the algorithm would be deployed
and how the set of active elements would transition from one con-
figuration to another as the traffic demand is changing. Finally,
assuming ideal knowledge about incoming traffic, Mahadevan at

al. [17] quantify the potential power savings in data centers by re-
sorting to topology control and the workload placement. Relative
to these works, EATe offers a mechanism which delivers on the
promise of power savings. It is an online and scalable approach
that could be deployed along with future hardware that supports
sleeping and rate-adaptation.

6. CONCLUSIONS AND FUTUREWORK
While reducing the energy consumption of network clients, servers,

and switches did receive considerable attention recently, there has
been very little effort on reducing the energy consumption of the
Internet backbone and the routers leading to it. If unattended, how-
ever, their energy consumption could become one of the Internet’s
dominant energy factors as the Internet traffic continues to grow
exponentially. This paper takes a fresh look at the traffic manage-
ment problem from the standpoint of energy-awareness. First, we
assume that energy-aware networking hardware will be deployed in
the near future. We then devise three performance-preserving tech-
niques that produce considerable energy savings on top of what
could be expected from a state-of-the-art traffic management algo-
rithm deployed over the future hardware. To the best of our knowl-
edge, we present the first online, energy-aware traffic management



technique. With just a simple mechanism such as the sleep state of
line cards, EATe can help bridge the gap to the energy-proportional
networking hardware.
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