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Abstract—The amount of energy consumed by computer sys-
tems can be lowered through the use of more efficient algorithms
and software. Unfortunately, software developers lack the tools
to pinpoint energy-hungry sections in their code and therefore
have to rely on their intuition when trying to optimize their code
for energy consumption. We have developed eprof, a profiler
that relates energy consumption to code locations; it attributes
both the synchronously consumed energy in the CPU and the
asynchronously consumed energy in peripheral devices like hard
drives, network cards, etc. Eprof requires minimal changes to
the kernel (tens of lines of code) and does not require special
hardware to energy-profile software. Therefore eprof can be
widely used to help developers make energy-aware decisions.

I. INTRODUCTION

The growing energy consumption of IT systems is quickly
becoming a major concern for users, ranging from corporations
trying to keep the total cost of ownership low, to end-users
who expect their mobile devices not to run out of battery while
on the run.

Choices that developers make in their software architecture
and software algorithms have a significant effect on the energy
usage of a system. All hardware has a baseline or idle power
draw which the hardware consumes regardless of the activity
of the system; on top of this, current hardware has a large
dynamic energy component caused by the specific interactions
of software with hardware components. Aside from improving
hardware to reduce its energy consumption, the system energy
consumption can be reduced by optimizing the interaction of
software with hardware.

When trying to write energy-efficient software, developers
currently have to rely on their intuition, because few tools and
methods exist which give insight into the energy consumption
of software. To this end, we have developed the eprof software
energy profiler, a tool which relates the consumed dynamic
energy back to the software that caused this consumption.
Using eprof , software developers can make informed choices
about which algorithms use less energy.

For example, a developer might have to choose between
using CPU resources to evaluate a function each time it is
used versus using memory accesses to look up precomputed
values in a table. Or, he might have the choice between storing
data in a compressed form on a disk, which requires extra
CPU resources versus using an uncompressed format, which
requires more disk accesses. In both cases eprof allows the
developer to understand how much energy is consumed for
each option. Moreover, if a software developer must optimize a

large code-base to use less energy, he can use eprof to identify
the code locations that use most energy, in order to rewrite
them. Seemingly simple functions with short execution times
may, in fact, consume vast amounts of energy because they
make asynchronous disk accesses or other device I/O.

While classic performance profiling might help in reduc-
ing runtime and therefore energy consumption in the CPU,
this CPU-centric approach ignores any energy consumed
in peripheral devices. However, especially on smartphones
and notebooks, the peripheral devices are significant energy
consumers. Eprof accounts for the energy consumed in devices
and attributes this energy to code locations that are responsible
for the device activity.

In contrast to currently available tools, eprof does not
require instrumentation of the source and generates energy-
usage information at a fine granularity; it can identify the
energy used by individual functions. After a calibration phase,
eprof does not require any external devices or circuitry and
thus enables the average developer to profile his software for
energy consumption.

The contributions of this paper are:
• attribution of energy consumed in asynchronous device

interaction to the responsible code;
• profiling for software energy consumption without the

need for external instrumentation; and
• design and implementation of eprof.

II. BACKGROUND AND CHALLENGES IN ENERGY
ACCOUNTING AND PROFILING

Software energy consumption is one of the two types of
energy consumption in a computer system: A static component,
the idle power, is always used, independent of the activities of
the system; on top of this exists a dynamic component which
depends on the activities of the system. Software executing on
the system will influence this software energy by computation
in the CPU, memory accesses and device interaction.

In modern ULV (Ultra-Low Voltage) processors and special-
ized mobile hardware, the dynamic portion can significantly
exceed the idle power draw. In such systems, the reduction
of dynamic energy has a large impact on the overall energy
consumption. We therefore posit that an energy profiler is
needed to help the developers gain insight into the distribution
of energy consumption among the code locations.

One difficulty in generating energy profiles is that hardware
does not track energy-usage information. However, other
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Figure 1. Eprof system overview. The profiled code executes, causing activity
in CPU and devices. This activity is observed by eprof, which records the
code location of the activity and estimates the energy consumed via an energy
model. Both estimated energy and code location are assembled to form an
energy profile of the executed code.

metrics obtained from the devices can be used as proxy for the
consumed energy, by means of an energy model (Section III-C).

Challenges

The existing large body of work on building accurate
energy models does not permit the developer to associate
code locations with the consumed energy. This task requires
the equivalent of a profiler that attributes energy, instead of
straightforward CPU utilization, to lines of code.

Moreover, the energy models are typically designed to treat
the system elements (CPU, memory, cache, etc.) as synchronous
entities and do not account for asynchronous requests (e.g.,
disk). The same applies for the traditional profilers that do not
deal with asynchronous devices. This presents an additional
challenge in profiling for energy.

It might be tempting to estimate the energy consumed by
a given code block or even a single line by creating a testing
harness that will exercise the desired code in a tight loop, and
measure the consumed energy. While doing so can be accurate
on simple systems, this approach fails in complex systems
where cache locality, CPU superscalar execution, or operating
system buffering effects obscure the results.

III. Eprof

An energy profile requires two types of information: the
amount of energy spent, and the code location which caused
this energy consumption. For every device, the eprof profiler
therefore implements two components: observation of energy-
relevant activity and estimation of the amount of energy
consumed by this activity (see Fig. 1).

When activity is observed in the CPU or in a device, eprof
records a stack trace to capture the code location where this
activity originated; the process when and where to capture
this stack trace depends on whether the activity is happening
synchronously or asynchronously. Eprof also estimates the
energy consumed for a particular CPU or device activity by
using a energy model. These two pieces of information, stack
trace and energy estimate, form the data required for the energy
profile of the tested code.

The CPU and memory subsystem consume energy syn-
chronously, i.e. the consumption happens while the code
is executing; computation, execution, and access to various
stages of the memory hierarchy will consume energy right
while they are being processed. Capturing the code location
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Figure 2. Flow of an asynchronous device request and profiling of its energy
consumption. (1) Code executes syscall to perform device I/O. (2) Kernel
allocates new request data structure and places it into a queue; eprof obtains
stack trace. (3) Driver dequeues device request and sends it to device. (4)
Device consumes energy while executing request. (5) Device notifies kernel
about request completion; eprof estimates energy for request. Energy estimate
and stack trace update the energy profile.

responsible for this activity is therefore straightforward. On
the other hand, devices consume energy asynchronously; a
process might initiate a read request to the hard drive, but both
the operating system and the device might queue the request
before processing it. When the request is finally processed
by the device, other code will be executing on the CPU.
This complicates the association between device activity and
originating code.

A. Profiling CPU Energy Consumption

For CPU and memory energy profiling, we use statistical
profiling via hardware performance event counters (HPCs).
Eprof observes activity by programming the HPCs to gen-
erate an interrupt whenever a counter threshold is reached.
When serving this interrupt, eprof captures a stack trace of
the currently running thread. Using a calibrated CPU and
memory energy model, eprof programs the HPCs as sampling
performance counters with thresholds set so that each sample
corresponds to a fixed amount of energy. In our prototype, we
use the perf subsystem of the Linux kernel to capture HPC
events and to report the profile.

B. Profiling Device Energy Consumption

Profiling for device energy consumption is significantly more
complicated than profiling for CPU energy consumption due
to the asynchronous nature of devices and device requests. We
will first give an overview of how a device request travels
through the system and we will then explain how eprof ties
into the system to obtain profiling data for code using devices.

Fig. 2 shows how a device request originates and flows
through a computer system:
(1) Code executes and calls into the kernel to perform some

device activity, such as disk or network I/O.
(2) The respective kernel subsystem eventually allocates a new

device request structure and places this request structure
into a request queue; this ends the synchronous execution
path and the thread blocks until request completion.

(3) Later the request gets dequeued asynchronously and the
request is sent to the device, possibly after being reordered.
The device may queue and reorder the requests internally
as well.



(4) The device processes the request and therefore consumes
energy.

(5) Once the device finishes processing, it asynchronously noti-
fies the kernel about the completion. Later the kernel wakes
up the waiting thread which then returns synchronously to
userspace.

The asynchronous nature of steps (3) to (5) means that
energy may be consumed before or after the responsible code
is executed. For example, energy might be spent in a radio
when writing data to a network socket, which will later lead to
a network packet being transmitted; the submitting code can
be seen as being responsible for the energy consumption of the
transmission, even though it executes before the energy will
be consumed by the radio. Likewise, a read from a file might
lead to energy consumed in the hard drive servicing the read
request; the code requesting the file read will be running while
it is submitting the read, but because of multiprogramming,
another process will be active while the hard drive services
this request.

The provenance of a device request must therefore be
recorded while the thread is executing synchronously. We
identify and discuss three obvious opportunities to do so during
the request flow: syscall entry, insertion of the request to the
processing queue, or allocation of the request data structure.

Capturing at the syscall entry: The syscall entry of a kernel
is a limited API and thus is a single, defined location that
needs to be instrumented to capture the stack trace. During
syscall entry, there is not enough information to determine
whether the syscall will eventually lead to a device request:
because operating systems extensively use buffering and request
merging, a read syscall might never lead to a disk request being
made because the requested data might already be present in
the buffer cache; likewise, send syscalls do not always lead
to a separate network packet being transmitted; data might be
queued until more data allows for more efficient transmission
(Nagle’s algorithm), or packets might be compressed or
fragmented for transmission.

Capturing at the driver level: Capturing a stack trace when
the request gets inserted into the driver device queue is the
last opportunity in the synchronous processing flow. At this
point, it is also definite that a request will be submitted to the
device, avoiding the uncertainty problem of the syscall entry
approach. However, pinpointing where exactly in the code the
stack trace should be captured requires high familiarity with
the code of the kernel subsystem and it might even require
modification of each driver.

Capturing in the device subsystem: The final option is
to record the stack trace when the request data structure is
allocated. Within the request flow, this option is located between
syscall and request enqueueing. It combines the certainty of
request submission of the enqueue location with the limited
API of the syscall entry location. Request data structures
are commonly allocated by one specialized function for each
request type; for example, in the Linux kernel, network packets
get allocated by __alloc_skb and disk I/O request are allocated
by bio_init. These functions are well-defined interfaces for each

TABLE I. REQUIRED KERNEL CODE CHANGES FOR eprof .

Kernel Location LOC modified/added

Generic eprof support 269
Disk energy provenance 15
Paging energy provenance 25
Network energy provenance 33

kernel subsystem, therefore avoiding tedious study of every
driver; instead, they are easy to locate for each request type.
They are always called in the synchronous code path, but at
the same time they are only called when a request will be
submitted to a device; if a syscall does not lead to a device
request due to buffering or request merging, no data structure
will be allocated by the kernel. In eprof we therefore follow
the principle of capturing provenance information whenever a
device request structure is allocated. Table I shows the amount
of kernel changes required for our prototype.

C. Energy Models

In our prototype of eprof , we use previously published energy
modeling concepts. If required, more sophisticated models
could be used, such as state machine-based device models [1],
models including dynamic voltage and frequency scaling [2],
or more detailed hard drive energy estimation [3], [4]. We
train all models separately for each platform by measuring the
system power draw during a set of benchmarks.

CPU and Memory Energy: The CPU and memory energy
model is a linear model based on hardware performance
counters [5]; it is trained using the SPEC CPU 2006 benchmark
suite. We select the set of performance counters that yields
the best energy model; this optimization also determines the
coefficients for the model [2].

Like [6], we use captured sequences of HPCs and externally
measured energy to train a linear model for each valid
combination of counters. We select the one combination of
counters which provides the lowest residual error. This selection
process also determines the coefficients for the linear model.

Hard Drive Energy: Disk energy consumption is modeled
using a simple linear relation between request duration and
energy [3]. We train the model using a micro-benchmark that
varies disk load intensity and disk seek distances.

D. Unifying CPU and Device Energy

Because device energy usage is quantified by a device-
specific energy model, while CPU energy usage is captured
through statistical profiling, eprof must merge these separate
sources into a single combined dataset. We do this by
transforming the device energy information to be compatible
with the statistical profiling samples. As a result, existing
statistical profiling tools can be used to analyze the combined
dataset.

In our prototype, we use the perf subsystem of the Linux
kernel to capture and report the profile. Perf, like most profilers,
does not allow for quantitative weights for the recorded
samples. This means that every sample corresponds to the
same amount measured. For example, in traditional profiling



based on sampling, each sample would represent a fixed unit of
time, e.g., 10 ms. With traditional sampling hardware profiling
counters, one sample would represent the fixed threshold
of the hardware counter, e.g., 10000 L2 cache misses. In
eprof , every sample represents a fixed amount of energy, e.g.,
100 mJ. The asynchronously consumed device energy, Edev,
will rarely match exactly this fixed value, Esample. We address
this problem by recording the call trace in the profiling data m
times rather than merely once, where m = bEdev/Esamplec.
That is, we record many samples so that the aggregate recorded
equivalent energy E′dev = m × Esample does not exceed
the real consumed energy Edev. The remainder in energy,
∆Edev = Edev −E′dev, is preserved and added to the energy
of the next request. This way, no energy consumption is
left unreported, while maintaining the properties of statistical
profiling. For example, given Esample = 0.1 J, the real
consumed energy Edev = 0.87 J will be recorded as m = 8
samples in the profiling data, and ∆Edev = 0.07 J will be
added to the next request energy.

IV. EVALUATION

We evaluate eprof on two hardware platforms: (1) an Asus
EeePc 1005P netbook with an Intel Atom N450 CPU (2) a Dell
OptiPlex 755 MT with an Intel Core 2 Quad Q6600 CPU We
obtain all energy measurements using a WattsUp .Net power
meter.

We use the SPEC CPU2006 benchmark suite2 in reference
size to train the profiler and to evaluate its accuracy over a large
range of different applications. Leave-one-out cross-validation
over the benchmark shows an average CPU model energy
estimation error below 10 %; the maximum runtime overhead
of eprof across this benchmark is 2.7 %.

The tables containing profiling results list the locations
energy was spent; userspace function names are formatted
plain, kernel functions are in [brackets]. For disk-related energy
consumption, we indicate that a function of interest appears as
part of a stack trace by setting it in italics and prepending an
ellipsis (. . . ). For example, . . . [sys_read] indicates that the given
amount of energy was spent in the disk, and the stack trace
contained [sys_read], the read system call function. In particular,
[copy_user_generic_string] is used to move data from the buffer
cache to userspace memory, and vice versa.

A. Attribution correctness

We show and evaluate the attribution accuracy of eprof .
Attribution accuracy is independent of any used model; an
accurate attribution will assign defined quantities to correct
code locations.

We demonstrate that eprof correctly attributes energy on
the function level by profiling a microbenchmark application.
The first part of the benchmark is a CPU-intensive repeated
generation of an SHA1 hash, using the OpenSSL library; this
computation consists of SHA1_Update, sha1_block_data_order and
memcpy. These functions are marked with (C) in the profiling

2We omit 401.perlbench, 447.dealII, 481.wrf, and 483.xalancbmk because
they do not compile or run due to the compiler version used.

TABLE II. ENERGY PROFILE OF THE CPU INTENSIVE TASK. Real energy
measured was 923 J, an error of 4.3%.

Fraction % Energy J Location

60.14 579 (C) sha1_block_data_order
18.75 180 (C) SHA1_Update
13.47 129 (C) memcpy

2.49 23.9 (C) main

Total 963

TABLE III. ENERGY PROFILE OF THE MEMORY INTENSIVE TASK. Real
energy measured was 1396 J, an error of 6.8%.

Fraction % Energy J Location

47.18 613 (M) memcpy
30.85 401 (M) msort_with_tmp
12.45 162 (M) cmpfn

4.98 64.8 (M) main

Total 1301

TABLE IV. ENERGY PROFILE OF THE MIXED TASK. Real energy measured
was 2291 J, an error of 3.6%. (C) denotes functions of the CPU-intensive
task, (M) denotes functions of the memory-intensive task.

Fraction % Energy J Location

31.36 692 (M+C) memcpy
27.92 616 (C) sha1_block_data_order
18.63 411 (M) msort_with_tmp

7.24 159 (M) cmpfn
7.18 158 (C) SHA1_Update
3.20 70.6 (M+C) main

Total 2208

tables. The second part is the memory-intensive repeated sorting
of a 50MB array of integers, alternating the sort order each
time. This is done with qsort, which in turn calls msort_with_tmp,
cmpfn and memcpy. Those functions are marked with (M) in the
profile tables.

Table II shows the profile for the CPU-intensive computation
running alone, Table III shows the profile for qsort running alone.
The total energy for both separate computations is estimated
with a low error (4.3 % and 6.8 %).

We now combine these two computations into a single
benchmark application and compare its profile to the profiles
of the separate runs. For the attribution to work correctly,
we expect that the attributed amount of energy for each
computation stays constant and is not influenced by running
both computations together.

The resulting profile is shown in Table IV. Compared to
the real energy measured, the total energy consumption is
estimated with 3.6 % error. The profile of the combined run
matches the sum of the total energy for both separate runs very
closely: 1.2 % error for measured energy and 2.5 % error for
estimated energy.

When looking at the energy attribution to specific functions
used in the computations, a similar picture emerges. For
example, msort_with_tmp is attributed 411 J for the combined
run and 401 J in the separate run (2.4 % error). The other
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Figure 3. Median error of the CPU/memory energy estimation using different
energy models. All is an ideal energy model using all captured performance
counters and selected is the model selected as described in Section III-C.
Cycles is a model only using CPU cycles, mimicking a conventional execution
time profiler.

functions exhibit similar results (cmpfn 1.9 %, SHA1_Update
13.9 %, sha1_block_data_order 6.0 %).

Two functions are shared by both computations, main and
memcpy. The sum of memcpy in the separate runs (742 J) also
matches closely the attribution of the combined run (692 J,
7.2 % error). The sum for main does not match the combined
run well. However, this is expected because main executes
the main benchmark loop and therefore duplicates much of
the work during the separate runs; in the combined run, this
duplication does not occur, therefore reducing the total energy
consumption by estimated 25.6 %.

The results of this microbenchmark show that eprof can
accurately attribute software energy to functions and allows
the developer to precisely determine which parts of the code
consume how much energy.

B. Energy and run time are not proportional

One might surmise that energy consumed by the program is
proportional to the time spent running it. While this tends to
be true in general, it does not accurately capture the amount of
energy spent. Fig. 3 shows that profiling only for CPU cycles
results in an energy model with a significantly higher estimation
error. Furthermore, profiling for CPU cycles does not capture
asynchronous energy used by devices. In our experiments,
we experienced as much as 33 % of the total energy being
consumed in asynchronous requests. In Tables V and VI, all
energy spent on disk I/O, listed as functions . . . [sys_write],
. . . [sys_read] and . . . [do_truncate] would go unnoticed. On the
Atom, this energy amounts to 25 % of the total energy; on the
Core2, it amounts to 33 %. This underlines the importance of
capturing and attributing asynchronous device energy.

V. REAL-WORLD APPLICATIONS

We now study the energy profile of a real-world application
and how energy profiling might guide development. In contrast
to performance optimization, energy-conscious development is
still in its infancy, and therefore best practices in algorithms
and data structures to lower energy consumption have not yet
been thoroughly studied. In this paper, we will not venture

TABLE V. ENERGY PROFILE OF PROCESSING A LARGE TEXT FILE ON THE
ATOM. Read_and_xlate in tr performs the processing, the other functions do
disk I/O; other tables also show processes gunzip and gzip, which are used
for decompression and compression of the data. Disk I/O uses 28% of the
total energy, the text processing uses 17%.

Frac. % Energy J Proc. Location

17.21 44.6 tr read_and_xlate
13.84 35.9 tr . . . [sys_write]

9.15 23.7 tr . . . [sys_read]
2.77 7.19 tr [copy_user_generic_string]
2.14 5.55 tr . . . [do_truncate]

Total 260

TABLE VI. ENERGY PROFILE OF PROCESSING A LARGE TEXT FILE ON THE
CORE2. Disk I/O uses 42% of the total energy, text processing uses 8%.

Frac. % Energy J Proc. Location

16.86 80.3 tr . . . [sys_read]
15.14 72.1 tr . . . [sys_write]

9.45 45 tr [copy_user_generic_string]
8.00 38.1 tr read_and_xlate
1.18 5.62 tr . . . [do_truncate]

Total 476

TABLE VII. ENERGY PROFILE OF PROCESSING A COMPRESSED TEXT FILE
ON THE ATOM. De- and re-compression use 75% of the total energy, text
processing uses 6.6%. Disk I/O energy is negligible.

Frac. % Energy J Proc. Location

19.86 116 gzip longest_match
18.66 109 gzip deflate
17.46 102 gzip fill_window

6.65 38.9 tr read_and_xlate
6.55 38.4 gzip updcrc
5.99 35.1 gunzip flush_window
3.61 21.1 gunzip inflate_codes
2.13 12.4 gzip ct_tally

Total 586

TABLE VIII. ENERGY PROFILE OF PROCESSING A COMPRESSED TEXT FILE
ON THE CORE2. De- and re-compression use 83% of the total energy, text
processing uses 3.5%. Disk I/O energy is negligible.

Frac. % Energy J Proc. Location

23.92 253 gzip longest_match
14.86 157 gzip deflate
14.79 156 gunzip flush_window
12.85 136 gunzip updcrc
10.54 111 gzip fill_window

3.94 41.7 gunzip inflate_codes
3.55 37.6 tr read_and_xlate
2.29 24.2 gzip compress_block

Total 1060

into proposing how to program more efficiently, but instead we
demonstrate how tools might be used to enable energy-aware
development.



A. Use compression to reduce disk I/O?

We now study the energy profile of a real-world application
and how energy profiling might guide development.

Many data-intensive applications, such as Google’s BigTable,
choose to work with compressed data to reduce the amount of
I/O they need to perform. Compression has also been suggested
[7] as a way to reduce energy consumption, based on the
assumption that the CPU can handle the decompression and
compression tasks using less energy than when transferring
large amounts of data from and to the hard drive. We use eprof
to check whether this hypothesis holds.

To compare compressed and uncompressed file processing,
we perform text replacement on a large log file, using the UNIX
tr utility. In the uncompressed case, the input file (1.7GB)
is fed directly to tr, and the output is written to disk. In
the compressed case, a compressed version of the input file
(101MB) is decompressed on the fly by gunzip and piped to
tr; its output is piped to gzip, which re-compresses the data on
the fly and writes it back to disk.

Tables V and VI show the energy profile for the uncom-
pressed file processing on Atom and Core2, respectively.
Tables VII and VIII show the energy profile for the compressed
case. The energy used in the compression/decompression is
significantly higher than the amount of energy used by the
disk (for both of our platforms). This finding shows that the
common wisdom is incorrect, at least for the popular systems
that we consider. In addition, this real-world case demonstrates
the need for an energy profiler, such as eprof.

Next, we discuss the relative energy consumption of Atom
vs. Core2. As expected, the Atom (a more energy-efficient
platform) consumes significantly less energy for the same task
in both the compressed (1.83x) and uncompressed case (1.89x).
The increase due to the use of compression is less for the
Atom (2.15x) than the Core2 (2.2x). This result agrees with
the intuition, as the Core2 system has a higher-performance
CPU and disk, leading to a higher joule-consumed-per-amount-
of-work-performed.

Surprisingly, the energy profile for the uncompressed case
is quite different between the CPUs: On the Atom the largest
single consumer is the actual text processing routine, using
17 % of the total energy (44 J). However, on the Core2, the
text processing only makes up 8 % of the energy (38 J), which
amounts to less absolute amount of energy than on the Atom.
A significantly larger portion of energy is spent on disk I/O
(both disk energy and copying of buffer cache data) on the
Core2 (41 %) than on the Atom (25 %).

This profile shows that energy use can differ greatly between
architectures and it underlines the necessity to use a profiling
tool instead of simply relying on best practices and intuition
when it comes to producing energy-efficient software. Although
a developer could use an external power meter to compare the
energy consumption of both approaches, he would not be able
to analyze which parts of the system use how much energy.

TABLE IX. ENERGY PROFILE OF VIDEO DECODING ON THE ATOM.

Fraction % Energy J Location

25.38 475 th_decode_packetin
21.40 400 oc_state_frag_copy_list_mmx

7.41 138 oc_huff_token_decode
6.88 128 oc_frag_recon_inter2_mmx
5.55 103 oc_dec_residual_tokens_unpack
5.05 94.5 oc_idct8x8_mmx
3.69 69 oc_dec_mv_unpack_and_frag
2.56 47.9 oc_state_frag_recon_mmx
2.26 42.2 oc_frag_recon_inter_mmx
1.17 21.8 . . . [sys_read]

Total 1872

TABLE X. ENERGY PROFILE OF VIDEO DECODING ON THE CORE2.

Fraction % Energy J Location

34.02 1477 th_decode_packetin
15.52 673 oc_state_frag_copy_list_mmx

9.49 412 oc_huff_token_decode
6.75 293 oc_frag_recon_inter2_mmx
6.24 270 oc_idct8x8_mmx
6.06 263 oc_dec_residual_tokens_unpack
2.80 121 oc_state_frag_recon_mmx
2.57 111 oc_dec_mv_unpack_and_frag
1.98 85.9 oc_frag_recon_inter_mmx
1.85 80.3 0x0000000021e6c0

Total 4342

B. Video decoding

Video playback is a common and increasingly important use
case for mobile devices. Here we show the energy profile of
decoding a 720p Xiph Theora video, for both Atom and Core2
systems (Tables IX and X). As expected the Atom has a “flatter”
profile among the CPU-intensive functions. A developer might
further use these profiles to select functions that allow for a
trade-off in video quality and energy spent.

C. Audio encoding choices and adaptation

Voice-over-IP applications can use different codecs to adapt
to the current bandwidth constraints while maintaining high
voice quality. Developers programming for energy-constrained
devices also have to keep track energy consumed in the
coding/decoding process.

To demonstrate how a developer might use eprof to compare
the energy-efficiency of different codecs, we contrast the eprof -
reported energy-efficiency of two popular VoIP codecs, the
GSM full rate speech codec that operates at 13.2kbits/s, and the
older G.726 ADPCM codec at 16kbit/s. As can be seen from
Tables XI and XII (for the Atom case), the GSM codec uses
more energy than G.726, while only providing a slightly lower
bitrate. Surprisingly, the G.726 energy efficiency drops slightly
for higher bitrates (result not shown). A developer could also
program software that can adapt the codec at runtime not only
to the bandwidth constraints, but also to the available energy.



TABLE XI. ENERGY PROFILE OF GSM ON THE ATOM.

Fraction % Energy J Location

18.40 11.7 Calculation_of_the_LTP_paramet
16.92 10.7 Short_term_analysis_filtering
14.77 9.39 av_resample

6.89 4.38 Gsm_LPC_Analysis
4.85 3.08 Gsm_RPE_Encoding
3.84 2.44 . . . [sys_read]
3.24 2.06 Gsm_Preprocess
2.32 1.47 audio_resample
1.55 0.986 memcpy
1.41 0.897 av_build_filter

Total 63.6

TABLE XII. ENERGY PROFILE OF G.726 ON THE ATOM.

Fraction % Energy J Location

41.26 20.3 g726_decode
19.05 9.41 av_resample

4.87 2.0 . . . [sys_read]
4.38 2.16 g726_encode_frame
2.99 1.47 audio_resample
2.22 1.09 [ext4_readpages]
1.82 0.899 av_build_filter
1.62 0.8 memcpy
1.35 0.667 [copy_user_generic_string]

Total 49.4

VI. LESSONS LEARNED

In the course of creating a working software energy profiler,
we made several observations worth sharing. We first tried
profiling for system energy using a full-system emulator, which
turned out to be complex and imprecise. Following this, we
turned to estimating energy using linear models, which turned
out deceivingly easy to mis-train.

Experience with full-system emulation: Instead of hardware
performance counters, the first version of eprof used a
qemu-based full-system emulator to estimate CPU energy
consumption, based on the intuition that different opcodes
or opcode classes consume different amounts of energy. Using
qemu’s binary translation system, we added instrumentation
that could attribute the estimated per-opcode energy to basic
blocks, and a simplified cache model kept track of cache and
memory accesses. The energy model was trained in advance
using micro-benchmarks that consisted of a single opcode
executed repeatedly in succession.

This method of training resulted in a largely imprecise
energy model. Further investigation showed that single-opcode
benchmarks would allow the CPU to pipeline execution
and, due to superscalar execution, retire multiple instructions
in parallel. The principal problem here is that one given
benchmark would always exhibit the effect in its extreme,
while another benchmark would inhibit the effect entirely.

Because this behavior is significantly more pronounced in
micro-benchmarks than in general-purpose code, the energy
estimate results in skewed, unreasonable values. By introducing
a magic constant, we tried correcting for this problem by

measuring the average instructions-per-cycle in general-purpose
code, and adjusting our energy model accordingly.

Even then, we could not consistently achieve acceptable
estimation errors for general-purpose benchmarks. Apart from
the coarse correction for superscalar execution, we believe that
the simplified emulated cache architecture could not capture
all nuances in processor and memory access behavior, such as
prefetcher operation or speculative execution.

Linear models are easy to get wrong: While working on the
linear energy models for eprof , no matter if using hardware
performance counters or software metrics for disk accesses, it
became apparent that it is easy to obtain a linear model that,
while appearing to be correct, turns out to be quite wrong.

We will illustrate the problem using a performance counter-
based model. When training such a model, the naïve approach
is to capture the total consumed energy (or average power
draw) and the total number of hardware performance events;
the linear model is then trained using values from multiple
benchmarks. Given a large enough number of benchmarks, this
approach will result in a generic model with acceptable error.

Yet, generally, this model will only be accurate for full
benchmark runs; when applying this model to short capture pe-
riods to obtain a time series of the energy consumption (power
draw), large discrepancies between model and measurements
will emerge.

We believe that this is most likely due to averaging effects
in the power draw and performance counter values which
often cancel each other. In the end this leads to a model that
appears correct when being checked against the same type
of measurements, but breaks down when faced with a higher-
resolution estimation task.

Based on other works that deal with energy or power
modeling, both submitted for review or already published,
we believe that others might also have fallen into this trap
without noticing. Once realized, it is easy to address: avoid
averaging or aggregating data when training or checking your
models.

VII. RELATED WORK

The existing techniques for CPU energy profiling can be split
into two distinct categories: In per-opcode modeling [8], [9],
[10] an emulator estimates the energy based on the opcodes
executed, leading to an accurate yet slow approach. Lower
overhead is achieved by probabilistic profiling, which can
either use an external power meter [11], [12], [13] or hardware
performance counters [14], [15], [6], [16], [17]. Eprof uses a
probabilistic sampling hardware performance counter model
to estimate CPU and memory energy.

Several previous systems perform energy estimation on a full
system scale [18], [19], [20], [21], [22]; however, they do not
allow for fine-grained attribution of energy. Eprof provides a
per-function attribution of both synchronous and asynchronous
energy.

Pathak et al. [1] build a set of finite state machines that model
the power behavior of the hardware used in their evaluation
platforms. Their profiler for smartphones [23] is similar to



eprof in that they allow fine-grained attribution of energy;
however, they require instrumentation of application source
code and perform tracing at the system call level. Eprof has
significantly lower overhead, works on unmodified binaries and
obtains attribution information on the subsystem level where
kernel requests are no more ambiguous.

VIII. CONCLUSION

Hardware is becoming increasingly energy-proportional and
mainstream computing starts to encounter power delivery limits.
It thus becomes crucial for developers to be able to obtain
energy profiles of their code because dynamic energy accounts
for the majority of the total system energy.

Unfortunately, traditional tools can only characterize en-
ergy behavior on a per-application basis, without being able
to attribute energy to specific code locations or accurately
attributing energy consumed by asynchronous devices. Ex-
ternal instrumentation using a power meter cannot obtain a
correct software energy profile; it only works when profiling
exclusively for synchronous energy, but fails for asynchronous
energy. Without recording of request provenance, the externally
determined amount of asynchronously consumed energy cannot
be mapped back to the originating software location.

To address these issues, we have designed and implemented
eprof, a software energy profiler. Eprof makes it possible to
calibrate a hardware platform once (using a power meter), and
then use the calibration data to obtain energy profiles of the
software running on that platform, without requiring the use of a
power meter. Eprof accounts for the asynchronously consumed
energy in device requests and attributes used dynamic energy
to code locations. While we use this feature to study real-world
scenarios involving energy used by a hard drive, we think that
the techniques described in this paper can be applied to any
asynchronous device; we identify generally applicable rules on
how energy can be tracked back to code locations.

Eprof currently runs on the x86-64 platform and supports
attribution of energy consumed by CPU, memory, disk, and
wireless radios. The source code to eprof is available at
labos.epfl.ch/eprof.
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