
1

Metron: High Performance NFV Service Chaining Even in
the Presence of Blackboxes

GEORGIOS P. KATSIKAS∗, KTH Royal Institute of Technology, Sweden

TOM BARBETTE†, KTH Royal Institute of Technology, Sweden

DEJAN KOSTIĆ, KTH Royal Institute of Technology, Sweden

GERALD Q. MAGUIRE JR., KTH Royal Institute of Technology, Sweden

REBECCA STEINERT, RISE, Sweden

Deployment of 100Gigabit Ethernet (GbE) links challenges the packet processing limits of commodity hardware

used for Network Functions Virtualization (NFV). Moreover, realizing chained network functions (i.e., service

chains) necessitates the use of multiple CPU cores, or even multiple servers, to process packets from such

high speed links.

Our system Metron jointly exploits the underlying network and commodity servers’ resources: (i) to
offload part of the packet processing logic to the network, (ii) by using smart tagging to setup and exploit

the affinity of traffic classes, and (iii) by using tag-based hardware dispatching to carry out the remaining

packet processing at the speed of the servers’ cores, with zero inter-core communication. Moreover, Metron

transparently integrates, manages, and load balances proprietary “blackboxes” together with Metron service

chains.

Metron realizes stateful network functions at the speed of 100GbE network cards on a single server, while

elastically and rapidly adapting to changing workload volumes. Our experiments demonstrate that Metron

service chains can coexist with heterogeneous blackboxes, while still leveraging Metron’s accurate dispatching

and load balancing. In summary, Metron has (i) 2.75-8x better efficiency, up to (ii) 4.7x lower latency, and
(iii) 7.8x higher throughput than OpenBox, a state of the art NFV system.

Additional Key Words and Phrases: NFV, service chains, hardware offloading, tagging, accurate dispatching,

elasticity, load balancing, blackboxes, 100 GbE

ACM Reference Format:
Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Gerald Q. Maguire Jr., and Rebecca Steinert. 2021. Metron:

High Performance NFV Service Chaining Even in the Presence of Blackboxes . ACM Trans. Comput. Syst. 1, 1,
Article 1 (May 2021), 44 pages. https://doi.org/10.1145/3465628

∗
Part of this work was done when Georgios P. Katsikas was at RISE, Sweden

†
Part of this work was done when Tom Barbette was at the University of Liège, Belgium

Authors’ addresses: Georgios P. Katsikas, KTH Royal Institute of Technology, Kistagången 16, Kista, Stockholm, SE-164 40,

Sweden, katsikas@kth.se; Tom Barbette, KTH Royal Institute of Technology, Kistagången 16, Kista, Stockholm, SE-164

40, Sweden, barbette@kth.se; Dejan Kostić, KTH Royal Institute of Technology, Kistagången 16, Kista, Stockholm, SE-164

40, Sweden, dmk@kth.se; Gerald Q. Maguire Jr., KTH Royal Institute of Technology, Kistagången 16, Kista, Stockholm,

SE-164 40, Sweden, maguire@kth.se; Rebecca Steinert, RISE, Kistagången 16, Kista, Stockholm, SE-164 40, Sweden, rebecca.

steinert@ri.se.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2021 Copyright held by the owner/author(s).

0734-2071/2021/5-ART1

https://doi.org/10.1145/3465628

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

HTTPS://ORCID.ORG/0000-0002-3890-6583
HTTPS://ORCID.ORG/0000-0003-1269-2190
HTTPS://ORCID.ORG/0000-0002-1256-1070
HTTPS://ORCID.ORG/0000-0002-6066-746X
HTTPS://ORCID.ORG/0000-0002-5893-7774
https://doi.org/10.1145/3465628
https://orcid.org/0000-0002-3890-6583
https://orcid.org/0000-0003-1269-2190
https://orcid.org/0000-0002-1256-1070
https://orcid.org/0000-0002-6066-746X
https://orcid.org/0000-0002-5893-7774
https://doi.org/10.1145/3465628

1:2 G.P. Katsikas et al.

1 Introduction
Following the success of Software-Defined Networking (SDN), Network Functions Virtualization

(NFV) is poised to dramatically change the way network services are deployed. NFV advocates

running chains of Network Functions (NFs) implemented as software on top of commodity hardware.

This is in contrast with chaining expensive, physical middleboxes, and brings numerous benefits,

such as: (i) decreased capital expenditure and operating costs for network service providers and

(ii) facilitates the deployment of exciting new services.

Achieving high performance (high throughput and low latency with low variance) using

commodity hardware is a hard problem. As 100Gigabits per second (Gbps) switches and Network

Interface Cards (NICs) are starting to be standardized and deployed [23, 27, 29, 97], maintaining

high performance at the ever-increasing data rates is fundamental for the success of NFV. To

quantify the challenging mission of NFV for line-rate 100Gigabit Ethernet (GbE) networking, the

available time to process a 64-byte frame at 100Gbps is only 6.72 nanoseconds.

In an NFV service chain, packets move from one physical or virtual server (hereafter simply called

server) to another to realize a programmable data plane. The servers themselves are predominantly

multi-core machines. Different ways of structuring the NFs exist, e.g., one per physical core or

using multiple threads to leverage multiple cores within each NF. NFs range from simple stateless

(e.g., forwarding) to complex NFs, such as Deep Packet Inspection (DPI), and potentially stateful

(e.g., proxy) NFs. Regardless of the deployment model and types of NF, every time a packet enters a

server, a fundamental problem occurs: how to locate the core within the multi-core machine that is

responsible for handling this packet? This problem reoccurs every step of the chain and can cause

costly inter-core transfers.

Our work, Metron (originally presented in [48]), eliminates unnecessary inter-core transfers

while exploiting the underlying hardware. In a 100-Gbps setup (see Figure 1) Metron achieves:

(1) a factor of 8 better efficiency,

(2) almost 3x lower and predictable latency, and

(3) 50% higher throughput than the OpenBox [16] data plane, a state of the art NFV system.

0.1
0.2
0.3
0.4

OpenBox
16 Cores

Metron
2 Cores

Metron
4 Cores

Hardware
Limit RSS

0.44

0.164 0.148 0.144

L
at

en
cy

 (
m

s)

(a) Latency (ms).

 50
 60
 70
 80
 90

 100

OpenBox
16 Cores

Metron
2 Cores

Metron
6 Cores

Hardware
Limit RSS

65.6 69

98.55 98.9

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

(b) Throughput (Gbps).

Fig. 1. Thanks to zero inter-core transfers and the hardware exploitation, Metron has 8x better efficiency
than the state of the art when realizing stateful (Router�Monitor�LB) packet processing at 100Gbps.

1.1 NFV Processing Challenges
To identify the core that will process an incoming packet, the NFV framework typically can only

examine the header fields. Here, there is a big mismatch between the way modern servers are

structured and the desired packet dispatching functionality. Figure 2 shows three widely used

categories of packet processing models in NFV.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:3

NF2
+ Tx

Rx +
NF1

Rx +
NF1 IdleNF1+

NF2+Rx Rx TxNF2Sw NF1 Idle

RSS

BypassBypass
NIC

User
space
Kernel Bypass

(a) Software switch
dispatching

(b) Pipeline dispatching
(with or without RSS)

(c) Rule or hash-based
hardware dispatching

Flow Rules
or RSS

C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4

Out
In

Out
In

Out
In

2 inter-core transfers 1 inter-core transfer4 inter-core transfers

Hardware-assisted approachesSoftware-based approach

Fig. 2. State of the art packet processing models either have too many inter-core packet transfers or load
balancing problems due to load imbalance and/or idle CPU cores. Receive-Side Scaling is abbreviated as RSS.

Software-based Dispatching
The first category (see Figure 2a), augments the weak programmability of current NICs with a

software layer that acts as a programmable traffic dispatcher between the hardware and the overlay

NFs. E2 [90], with its software component called SoftNIC [31], falls into this category. SoftNIC

requires at least one dedicated Central Processing Unit (CPU) core for traffic dispatching and

steering (see Figure 2a), while the NFs run on other CPU cores. Earlier works, such as ClickOS [66]

and NetVM [35], also used software switches on dedicated cores to dispatch packets to a Virtual

Machine (VM), but without the flexibility of E2.

Pipeline Dispatching (with or without Receive-Side Scaling)
Rather than having a shim layer between the NFs and the NICs to select the next hop in a service

chain, the second category of packet processing models (see Figure 2b) utilizes a pipeline of

reception, processing, and transmission threads, each on a different (set of) core(s). If more than

one reception core is required, this model uses Receive-Side Scaling (RSS) [36] as described below.

For example, OpenNetVM [115], Flurries [114], and NFP [100] (a parallel version of OpenNetVM)

fall into this category. Similar to E2, these works introduce programmability by augmenting the

reception and processing parts of the pipeline with traffic steering abilities.

Hardware-assisted Dispatching using RSS or Flow Rules
The last category of packet processing models (see Figure 2c) relies on two hardware features

provided by a large fraction of NIC vendors today. First, RSS uses a static function to dispatch

traffic to a set of CPU cores by hashing the values of specific header fields. Second, NICs can be

programmed via a rule-based vendor-specific “match-action” Application Programming Interface

(API) to dispatch traffic to specific NIC hardware queues associated with designated CPU cores.

Intel’s Ethernet Flow Director [95] and the Mellanox Accelerated Switching and Packet Processing

(ASAP
2
) [68] are examples of this technology. The Data Plane Development Kit (DPDK) flow

API [104] abstracts such multi-vendor technologies to offer a unique rule API for all DPDK-based

NICs. Unlike all previous models, neither RSS nor the rule-based approaches require dedicated

dispatchers, hence they achieve higher performance. OpenBox
∗
[16], FastClick [8], Synthesized

Network Functions (SNF) [49], and RouteBricks [22] use RSS, while CoMb [98] uses Flow Director.

Summary
None of these schemes guarantee that the core that receives an incoming packet will be the one

processing it. Flow hashing as in RSS can introduce serious load imbalances under skewedworkloads

(due to flows with the same hashes). Rule-based flow dispatching permits explicit flow affinity,

∗
An accelerated version of the OpenBox data plane is used in this article, taken from the Metron conference paper [48].

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:4 G.P. Katsikas et al.

but suffers from the limited classification capabilities of today’s commodity NICs. When there is

a mismatch, the packet is handed off to the correct core. However, this requires transferring the

packet via the Last Level Cache (LLC) or Dynamic Random-Access Memory (DRAM) to the target

processing core. Recent studies on modern servers have shown that LLC and DRAM transfers take

several nanoseconds (up to 14.3 ns for LLC and up to 71.7 ns for DRAM on an Intel Xeon E5-2667

v3) [44]. These access latencies are far from the target 6.72 ns/64-byte packet to achieve line-rate

processing at 100Gbps. Therefore, there is a clear mismatch between the processing requirements of

high-speed networks and the way that existing NFV systems process packets. Our earlier work [50]

demonstrated that dramatic speedups (with several times lower latency and orders of magnitude

lower latency variance) occur if the correct core receives the packet straight from the NIC and the

packet remains in the core-specific cache(s).

1.2 Metron Research Contributions
Metron is a system for NFV service chain placement, request dispatching, and dynamic scaling.

To the best of our knowledge, Metron is the first system that automatically and dynamically

leverages the joint features of the network and server hardware to achieve high performance.

Metron eliminates inter-core transfers (unlike recent work with 4 [90], 2 [114], or 1 [16] inter-core

transfers as shown in Figure 2), making it possible to process packets potentially at L1 cache speeds.
Also, by combining smart identification, tagging, and dispatching techniques we overcome the load

balancing issues of “run-to-completion” approaches [8, 16, 22, 49].

We had to address a number of challenging problems to realize our vision. First, making efficient

use of all the available hardware is hard because of the in-machine request dispatching overheads

(described earlier). Second, discovering and dealing with the heterogeneous network (both switches

and NICs) and server hardware, in a generic way, is non-trivial from a management perspective.

Third, detecting and dealing with load imbalances that reduce the performance of the initially placed

service chains requires rapid and stable adaptation. Finally, addressing all the above challenges,

while allowing network operators to transparently integrate proprietary closed-source NFs (also

known as “blackboxes”) is extremely challenging. Our research contributions, while addressing the

aforementioned challenges, are:

Contribution 1
We orchestrate programmable network’s hardware to perform stateless traffic processing and

classification. We deal with hardware heterogeneity by building upon the unified management

abstractions of an industrial-grade SDN controller called Open Network Operating System

(ONOS) [9]. This allows Metron to leverage state of the art management protocols, such as

OpenFlow [67] and Programming Protocol-Independent Packet Processors (P4) [14], and easily

integrate future ones. We contributed a new network driver [43] and configuration protocol [45]

(also described in Appendix A) for programmable NICs and servers to ONOS.

Contribution 2
We overcome the network/server architecture mismatch by instructing Metron to tag packets as

early as possible, enabling them to be quickly and efficiently switched and dispatched throughout the

entire chain. To do so, Metron first uses SNF [49] to identify the traffic classes of a service chain and

produce a synthesized NF that performs the equivalent work of the entire service chain (see §2.3.1).

Then, Metron divides the synthesized NF into stateless and stateful operations (see §2.3.3) and

instructs all available programmable hardware (i.e., switches and NICs) to implement the relevant

stateless operations, while dispatching incoming packets to those CPU cores that execute their

associated stateful operations. Metron runs stateful NFs on general purpose servers, while fully

leveraging their generic processing power.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:5

Contribution 3
We propose a way to efficiently and quickly obtain the network state in order to make rapid service

chain placement decisions at low cost and with high accuracy (see §2.3.3).

Contribution 4
We solve an important problem of the networking industry by enabling the coexistence of “blackbox”

packet processing applications with Metron service chains. Metron provides both software and

hardware-based mechanisms that allow network operators to transparently integrate, manage, and

load balance blackbox NFs, the binaries of which can be deployed as native processes or inside

containers/VMs. Metron’s blackbox integration strategy is presented in §3.

Contribution 5
We exploit the tags, inserted by Metron’s hardware dispatcher, to coordinate load balancing among

the CPU cores of NFV servers, by scaling packet processing at a finer level of granularity: the level

of a traffic class. The dynamic scaling approach of Metron is presented in §4.

To the best of our knowledge, Metron is the first work that deeply studies both performance

and scaling aspects of NFV service chains at the challenging link speed of 100Gbps. We envision

Metron as an industrial solution, co-existing with heterogeneous open and/or proprietary NFs,

therefore we encourage the networking community to use and contribute to our open source

prototype [5, 45, 46].

Evaluation Summary
Metron realizes deep packet inspection at 40 Gbps (§5.3.1) and stateful service chains at the speed of

100GbE NICs on a single server (§5.3.2). This results in up to 4.7x lower latency, up to 7.8x higher

throughput, and 2.75-8x better efficiency than the state of the art. In §5.5 we show how effectively

Metron scales packet processing on demand, even under highly-variable workloads up to 100Gbps.

In §5.4 we demonstrate a practical integration of a blackbox NF between two Metron service chains.

In this experiment Metron load balances traffic to the blackbox NF using: (i) a native RSS-based
dispatcher and (ii) Single Root I/O Virtualization (SR-IOV) [13] for NIC to VM dispatching. In both

cases, Metron realizes two service chains with a blackbox NF at the speed of the underlying 100

GbE testbed. It is difficult to improve on this performance unless we completely offload stateful

service chains to hardware, which is impossible with today’s commodity equipment.

2 System Architecture
This section describes Metron’s system design, starting with a high-level overview via an illustrative

example in §2.1. In §2.2 we describe the Metron data plane, which communicates with the Metron

controller (§2.3) through the Metron protocol (Appendix A). In §2.4 we explain how Metron deals

with routing and failures.

2.1 Overview
To understand how Metron works, consider a simple network consisting of two OpenFlow switches

connected to a server as shown at the bottom of Figure 3. Assume that an operator wants to deploy

a Firewall�DPI service chain, as shown in Step 1 of Figure 3.

In Step 2, the Metron controller identifies the traffic classes
†
of the service chain, by parsing the

packet processing graphs of the input NFs. Each graph has a set of packet processing elements as

in [16, 58, 90]. In Step 3, Metron composes a single service chain-level graph by synthesizing the read

and write operations of the individual graphs (see §2.3.1). Because Metron detects the availability

of resources (i.e., the OpenFlow switches) along the path to the server, it associates stateless

read and write operations with these components and automatically translates these operations

†
A traffic class is a (set of) flow(s) treated identically by a service chain of NFs.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:6 G.P. Katsikas et al.

(4.2, 8.2) Install software
operations

Metron Controller

Metron Agent

Firewall DPI

(2) Identify
traffic classes

(3) Synthesize HW read/write
operations and stateful SW
operations to run on servers

(1) Service chain description
from the application

Source
(5) Dispatch to
the correct core

(4.1, 8.1)
Install

OpenFlow rules
Core 1
Core 2

NFV Server
OpenFlow
Switches

(4) Install rules/software

(7) Split/merge
traffic classes to
rebalance load

(6) Collect
run-time load
statistics

Fig. 3. Metron overview using an example Firewall�DPI service chain.

into OpenFlow rules (Step 4.1). The remaining, potentially stateful, operations are translated into

software instructions targeting the Metron agent at the server (Step 4.2). Key to Metron’s high

performance is exploiting hardware-based dispatching (Step 5) that annotates the traffic classes

matched by the OpenFlow rules with tags that are subsequently matched by the server’s NIC to

identify the CPU core to execute the stateful operations. In this way, Metron guarantees that each

traffic class will be processed by a specific core, thus eliminating costly inter-core communications.

This guarantee is maintained even when a CPU core becomes overloaded (see §4) as the Metron

agent reports run-time statistics (Step 6) that allow the Metron controller to rebalance the load

(Step 7) by splitting traffic classes into multiple groups that are dispatched to different cores using

different tags (Steps 8.1 and 8.2). We conclude this overview with a survey of widely used NFs;

noting that in Table 1 a substantial portion of these NFs can be (fully or partially) offloaded to

commodity hardware. Hybrid NFs can be either stateful or stateless (thus offloadable), depending

on the needs of the network operator.

Table 1. Survey of widely used NFs. The offloadability of “Hybrid” NFs depends on the use case.

Network Function Offloadable to Hardware
L2/L3 Switch, Router Yes

Firewall/Access Control List (ACL) Hybrid

Carrier Grade NA(P)T, IPv4 to IPv6 No

Broadband Remote Access Server Partially [21]

Evolved Packet Core Partially

Intrusion Detection/Prevention Partially [40]

Load Balancer Hybrid

Flow Monitor Yes

DDoS Detection/Prevention Yes [59]

Congestion Control (RED, ECN) Yes

Deep Packet Inspection No

IP Security, Virtual Private Network Yes [93]

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:7

2.2 Metron Data Plane
The Metron data plane follows the master/slave approach depicted in Figure 4. The master process

is an agent that interacts with (i) the underlying hardware by establishing bindings with key

components, such as NICs, memory, and CPU cores and (ii) the Metron controller through a

dedicated channel. This channel is described in Appendix A.

Metron
Data Plane

Agent
Slaves

S2S1

Master Processing Blocks

Metron Controller

Monitor

C1 C2 ... CN

SK...

Tagging
Module

CPU NIC

Fig. 4. The Metron data plane.

The key differentiator between Metron and earlier NFV works is the tagging module shown

in Figure 4. This module exposes a map with tag types and values that each NIC uses to interact

with each CPU core of a server; this map is advertised to the Metron controller. The controller

dynamically associates traffic classes with specific tags in order to enforce a specific flow affinity,

thus controlling the distribution of the load. Most importantly, this traffic steering mechanism is

applied by the hardware (i.e., NICs), hence Metron does not require additional CPU cores (as E2

does) to perform this task, thus packets are directly dispatched to the CPU core that executes their

specific packet processing graph.

When the master boots, it configures the hardware and then registers with the controller by

advertising the server’s available resources and tags. Now the master awaits controller instructions.

As will be described in Appendix A, one such instruction is an “SC_DEPLOY_REQ” with its

corresponding software configuration for a target server (see Table 4). The master executes this

instruction by spawning a slave process that is pinned to the requested core(s) and by passing the

processing graph described in the software configuration to the slave. In the context of service

chaining, a Metron slave needs to execute multiple processing graphs, each corresponding to a

different NF in the service chain. Such graphs can be implemented either in hardware or software.

Earlier works [114, 115] implement these graphs in software and use metadata to share information

among NFs and to define the next hop in a service chain. Although Metron supports this type of

software-based chaining, as shown in §1.1, this approach introduces unnecessary overhead due

to excessive inter-core communication and potentially under utilizes the available hardware. We

explain how to solve this problem in §2.3.

2.3 Metron Control Plane
Here, we describe the key design choices and properties of the Metron controller.

2.3.1 Synthesis of Packet Processing Graphs Given a set of input packet processing graphs, one per

NF, Metron combines them into a single service chain graph. To ensure low latency, the Metron

controller adopts SNF[49]; a more aggressive variant of OpenBox for merging packet processing

graphs, which provides a heuristic for solving the graph embedding problem (see [18, 33, 112]) in

the context of NFV. Metron uses SNF to eliminate redundant processing by synthesizing those read

and write operations that appear in a service chain as an optimized equivalent packet processing

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:8 G.P. Katsikas et al.

graph. SNF guarantees that each header field is read/written only once, as a packet traverses the

processing graph. Another benefit of SNF’s integration into Metron is the ability to encode all

the individual traffic classes of a service chain using a map of disjoint packet filters (Φ) to a set

of operations (Ω). In §4 we use this feature to automatically scale packet processing in and out,

providing greater elasticity than possible today.

2.3.2 Initial Resource Allocation To allocate resources for the synthesized graph, we allow

application developers to input the CPU and network load requirements of their service chains.

Alternatively, this information can be obtained by running a systematic NFV profiler, such as

SCC [50], or by using more generic profilers, such as DProf [91]. Even in the absence of accurate

resource requirements, Metron dynamically adapts to the input load as discussed in §4.

2.3.3 Scalable Placement with Minimal Overhead Metron needs to decide where to place the

synthesized packet processing graph. Such a decision is not simple, because Metron considers both

a pool of servers and a pool of heterogeneous network elements, such as (programmable) switches,

routers, and server NICs, along the path to these servers. Table 1 showed that a large fraction of NFs

cannot be implemented in commodity hardware today, mainly because they require maintaining

state. This means, that the synthesized graph of such NFs cannot be completely offloaded.

Key contribution: To address this issue we solve a graph separation problem, which allows

Metron to traverse and split the synthesized graph into two subgraphs: (i) a stateless subgraph
that contains those packet filters and operations that can be completely offloaded to the network

and (ii) a stateful subgraph, deployed on a server, to perform the remaining stateful operations.

Packets exiting the stateless subgraph are tagged in a way that allows efficient (with zero inter-core

communication) traversal of the stateful subgraph. The average complexity of this task is O(logm),
wherem is the number of vertices of the synthesized graph.

Given these two subgraphs, Metron needs to find a pair of nodes (a server and a network element)

that satisfy two requirements: (i) the server has enough processing capacity to accommodate

the stateful subgraph and (ii) the network element has enough capacity to store the hardware

instructions (e.g., rules) that encode the stateless subgraph. Metron’s placement scheme deals with

logical servers and network elements, hence allowing further partitioning of the graphs when no

single server or network element has sufficient resources. Future work will allow Metron to prevent

service chain placement when (i) there is not enough network throughput available or (ii) doing
so would increase path latency between a network element (e.g., a switch) and a Metron server.

In networks with a large number of servers and switches, it is both expensive and risky to obtain

load information from all the nodes. This is expensive because a large number of requests need to

be sent frequently and this would occupy bandwidth to each node, generate costly interrupts to

fetch the data, and occupy additional bandwidth to return responses to the controller. This is risky

because the round-trip time required to obtain the monitoring data is likely to render this data stale,

leading to herd behaviors and suboptimal decisions. To make a server placement decision with

minimal overhead, we use the simple, yet powerful, opportunistic scheme of “the power of two

random choices” [76]. This number offers exponentially better load balancing than a single random

choice, while the additional gain of three random choices only corresponds to a constant factor.

Algorithm 1 outlines our server placement scheme. Metron queries the load of two randomly

selected servers (line 5) and selects the least loaded of these two servers (lines 7-9), provided that

this server can meet the necessary resource requirements (i.e., the server has enough NICs and CPU

cores to realize this service chain). If the first two choices fail, then these two servers are removed

from the list (line 16) and the process is repeated until a server is found (line 14). This algorithm

indirectly prioritizes service chain deployments that exhibit spatial correlation with respect to the

processing location because spreading this processing may result in lower performance, which is

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:9

ALGORITHM 1: Server selection for placing the stateful packet processing subgraph.

Input: Topology graph (T), number of NICs (NbN), and number of cores (NbC) required for a service chain.

Output: Upon success, a server to perform the stateful operations of a service chain, otherwise NULL.

1 Function selectServer(T ,NbN ,NbC):
2 serversList ← T .metronServers();
3 t ← ∅; // t will store the chosen server

4 while size(serversList) > 0 do
5 choices ← twoRandomChoices(serversList);
6 for s ∈ choices do
7 if (s .nics ≥ NbN) and (s . f reeCores ≥ NbC) then
8 if (t == ∅) or (t .load < s .load) then
9 t ← s; // Better choice

10 end
11 end
12 end
13 if t , ∅ then
14 return t; // Server found

15 end
16 serversList .remove(choices);
17 end
18 return ∅;

undesirable. Network operators can input a desired server per service chain to the Metron controller,

thus completely bypassing the random server selection process described in Algorithm 1.

Randomly or explicitly selecting a server greatly simplifies the second placement decision (i.e.,

the network element(s) to offload processing to). Well designed networks, such as datacenters,

provision several fixed shortest paths between ingress nodes (e.g., core switches) and servers, where

each server might be associated with a single core switch [1, 2]. Given this, we use Algorithm 2 to

find the most suitable network element to offload the stateless graph, using the following inputs:

(1) the topology graph (T);

(2) the server (Srv) where the stateful subgraph will be deployed (chosen by Algorithm 1), and;

(3) the rule capacity (D) required to offload the stateless subgraph.

Algorithm 2 intentionally prioritizes selection of the very first network element (ingress) toward

the target server (line 3). There are two reasons for this. First, applying the classification operations

of a service chain at the earliest possible stage, greatly simplifies traffic steering for this service

chain at all subsequent network elements on the path to the NFV server. This is done by tagging

the packets targeting this service chain at the ingress node and using only this tag to match traffic

at any successor of the ingress node. Second, popular network protocols, such as Multi-Protocol

Label Switching (MPLS) [96], consider ingress and egress switches to be more sophisticated, thus

more powerful, by design. After a target network element has been selected, the rules that encode

the stateless subgraph are installed in this element and a unique tag is appended to each of the rule

actions. To establish the path between the selected network element and server, one rule is installed

in each subsequent node along the path; this rule matches the tag of the offloaded service chain

and selects the port that leads to the server that executes the stateful part of this service chain.

According to Algorithm 2, if the capacity requirements of the ingress node cannot meet the

requirements for offloading a service chain (line 6), our algorithm selects a subsequent node along

the path to the NFV server (line 10), sets up forwarding between the current and next node (line 14),

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:10 G.P. Katsikas et al.

ALGORITHM 2: Network element selection for placing the stateless packet processing subgraph.

Input: Topology graph (T), server (srv), and rule capacity (D)
Output: Upon success, a node to perform the stateless operations of a service chain, otherwise NULL.

1 Function selectNetworkElement(T , Srv,D):
2 C ← T .availableCapacityMatrix()
3 inEl ← T .inдressNodeToward(Srv)
4 return recursiveNetworkElementSelection(T,inEl,Srv,C,D);
5 Function recursiveNetworkElementSelection(T ,El , Srv,C,D):

// Demand is a fraction of the current capacity

6 if D ≤ (CEl ·CAP_THR) then
7 return El ;

8 end
9 else

10 nextEl ← T .nextNodeInPath(El , Srv)
11 if nextEl == ∅ then
12 return ∅;
13 end
14 setupPath(El ,nextEl)

15 return recursiveNetworkElementSelection(T ,nextEl , Srv,C,D);
16 end

and applies the same logic recursively (line 15). Our decision is currently based on a single criterion

(line 6); that is, the rule capacity of a candidate node must be greater than the required and at the

same time the resources required must not exceed some measure of the capacity (CAP_THR). The
latter condition ensures that this node has enough space to accommodate future rule updates. If no

switch is selected by Algorithm 2, Metron checks if a NIC of the server selected by Algorithm 1

does so; if so, then NIC offloading is performed.

Handling Partial Offloading and Rule Priorities
Metron carefully handles the cases when a stateless subgraph contains rules with different priorities

and one or more rules of such a subgraph cannot be offloaded to hardware. The latter can occur, e.g.,

due to the hardware’s inability to match specific header fields. In such a case, Metron selectively

offloads only the supported rules, while respecting rule priorities. To exemplify these two cases,

assume a service chain deployed on the topology shown earlier in Figure 3. Assume that this service

chain implements four rules that can be offloaded to the first switch, while the remaining (stateful)

part of the service chain will be deployed on the server. If rule 3 cannot be offloaded and all of the

rules have the same priority, then Metron will offload rules 1, 2, and 4. However, if these rules have,

e.g., decreasing priorities (i.e., rule 3 has a higher priority than rule 4), then Metron will offload

only the first two rules, to guarantee that the server applies rule 4 after rule 3.

2.3.4 Distributed Control Plane Unlike existing NFV controllers, such as OpenBox and E2, Metron

is a distributed NFV framework that enables elasticity of both the control and data planes.

A distributed control plane provides fault-tolerance and resilience in the face of failures that

might compromise the NFV services. At the same time, the system as a whole can meet performance

targets that are far higher than what a single instance might be able to handle, thus allowing the

control plane to scale together with the data plane. Metron’s elastic control plane allows us to

partition the network into multiple segments with different controller instances managing different

devices, while maintaining a globally consistent network state.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:11

Metron can be configured to operate with strong or eventual consistency guarantees, depending

on the performance targets of the operator. To provide strong guarantees, Metron’s distributed

engine is based on the Raft [83] consensus protocol. Eventual guarantees trade some consistency for

superior performance by reading and writing local state, while updates are subsequently propagated

to other replicas in the background. When an application registers a service chain with Metron, its

packet processing graphs are stored and replicated across all Metron instances, while one primary

instance undertakes to place and deploy the service chain in the network segment with the highest

availability, as explained in §2.3.3.

2.4 Routing (Updates) and Failures
To explain how Metron’s routing and dispatching works and how Metron reacts to routing updates

and failures, we use the example shown in Figure 5. We assume a software-defined
‡
network on

which the network operator has deployed a routing application that routes Hypertext Transfer

Protocol (HTTP) traffic
§
between source and destination (through the path s1�s3). This routing is

done using the information shown within green dashed-dotted outlines.

Global Controller

NFV Server (srv1)

Advertised OF Rules on s1 and s3
Rs1: match HTTP_RULE action outPort 1
Rs3: match HTTP_RULE action outPort 2

Source

Core2:
Core1:

Metron NFV Controller Routing App

s1

s2

s3

Initial HTTP Path (Routing):

0

1

2

0 1

0 2

Metron Updates OF Rules on s1
R1’s1: match HTTP_RULE && ipSrcNet 10.0.0.0/8
 action tag X, outPort 1
R2’s1: match HTTP_RULE action tag Y, outPort 1

Metron HTTP Service Chain
 IP src in 10.0.0.0/8 → Monitor
 Remaining HTTP Traffic→IDS

Metron Updates OF Rules on s3
R1’s3: match tags X,Y && inPort 0 action outPort 3
R2’s3: match inPort 3 action untag, outPort 2

Metron Installs NIC Rules on srv1
R1’NIC: match tag X action Core 1
R2’NIC: match tag Y action Core 2

NIC

Advertised Paths to srv1
P1: s1→s3-----,,-1, (primary)
P2: s1→s2→s3 (secondary)

 HTTP_RULE: ethType IPv4 &&
 proto TCP &&

 src/dstPort 80

Metron Signaling:

1
Destination

3

Updated HTTP Path--(Metron):

Updated Metron Operations:
Initial Routing Operations:

Metron HTTP Policy:

Fig. 5. Metron’s routing & CPU dispatching scheme.

A policy change forces the network operator to further process the HTTP traffic before it reaches

its destination. Thus, she deploys an HTTP service chain (described by the top left box with dotted

outline in Figure 5) using Metron. When Metron boots it obtains the current routing policy and

paths for the HTTP traffic, as advertised by the routing application. Next, the Metron controller

performs a set of updates (see the left-side boxes with solid outlines, where OF stands for OpenFlow).

‡
Metron can also operate in legacy networks by adding one or more programmable switches before the NFV servers.

§
We assume only HTTP traffic to keep the example simple.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:12 G.P. Katsikas et al.

The updates focus on two aspects: (i) to extend the existing HTTP rules (i.e., Rs1 and Rs3 at the
bottom right box with dashed-dotted outline) with rules that also perform part of the service chain’s

operations (i.e., R1′s1 and R2
′
s1) and (ii) to tag the HTTP traffic classes to allow the NFV server to

dispatch them to different CPU cores.

In this example, Metron identifies two traffic classes and tags them with tags X and Y. The tagging

is applied by the first switch (i.e., s1 as per Algorithm 2 explained in §2.3.3) using the rules R1′s1 and
R2′s1 (top left box with solid outline). The next switch (s3) uses the tags (i.e., rule R1′s3) to redirect

the HTTP traffic classes to the NFV server, where Metron has installed NIC rules (i.e., R1′N IC and

R2′N IC) to dispatch packets with tags X and Y to CPU cores 1 and 2 respectively. The first core

executes a monitoring NF, while the second core runs an Intrusion Detection System (IDS) NF.

After traversing the service chain, the packets return to s3, where another Metron rule (i.e., R2′s3)
redirects them to their destination.

Unless carefully addressed, a routing change or failure might introduce inconsistencies. Metron

avoids these problems by using the paths to the NFV server (i.e., P1 and P2), as advertised by the

routing application, to precompute: (i) alternative switches that can be used to offload part of a

service chain’s packet processing operations (see §2.3.3) and (ii) the actual rules to be installed in

these switches. In this example, a routing change from path P1 to P2 (due to a routing update or a

link failure between s1 and s3) will result in Metron installing 2 additional rules in s2 (these rules

follow the same logic as the rules in s3). Metron also updates the first rule of s3 by changing the

inPort value to 1 rather than 0.

Backup configurations are kept in Metron’s distributed store and are replicated across all the

Metron controller instances in order to maintain a global network view. When a routing change or

failure occurs, Metron applies the appropriate backup configuration. In §5.6 we show that Metron

can install 1000 rules in less than 200ms, hence quickly adapting to routing changes and failures,

even those requiring a large number of rule updates.

3 Integration of Blackboxes
Network operators deploy blackbox NFs ranging from dedicated hardware devices to closed-source

binaries running as native processes or inside VMs or containers. These blackbox functions provide

crucial functionality to the network at the cost of increasing its processing/management complexity.

Despite the presence of blackboxes, it is essential to ensure that NFV service chains provide high

performance, therefore we put special effort into fully integrating blackboxes in Metron.

Because of the different varieties of blackbox deployments (e.g., VMs, containers, middleboxes),

Metron offers several ways to co-locate Metron service chains with blackboxes, as shown in Figure 6.

Because Metron can query the load of the CPUs executing the different blackbox functions and

scale them automatically as described in §4, Metron’s blackbox integration provides elasticity.

Software-based Blackbox Integration
Figure 6a depicts the first integration method, which is purely software based. This method allows

a blackbox function to share memory with existing Metron service chains, therefore exchange

references to packets (instead of copying the packets) with these service chains. When a blackbox

function needs to be placed between two Metron service chains, the Metron controller partially

synthesizes the entire pipeline. Specifically, the controller synthesizes the first part of the pipeline

until the blackbox function, then proceeds with the synthesis of the second part (i.e., after the

blackbox), and finally stitches all three parts together using ring buffers. This way, optimized (i.e.,

synthesized by SNF [49]) Metron service chains can transparently coexist with blackboxes.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:13

Server
Core 1

Service Chain

Core N
Service Chain

...

Core NSynthesized
NFs

Blackbox
NF

Synthesized
NFs

Rings

Phys.
NIC

Synthesized NFs coexist with blackboxes

Input
Traffic

(a) Integration of blackbox NFs using ring buffers.

Server

 VM/Container/Process

 VM/Container/Process

Phys.
NIC

VNIC

Core N-1

Core N-2
...

Core N-1

Core 1-N
VNICs

Input
Traffic Synth.

NF 3

Blackbox
NF 1

Blackbox
NF 1

Blackbox
NF 2

(b) Integration of blackbox NFs using Virtual NICs (VNICs).

Server Blackbox Server
Metron

Input
Traffic

Synthesized
NFs Blackbox NF

NIC Queues
Phys.
NIC

Server

Traditional Blackbox
(Middlebox)

Metron
Input
Traffic

Synthesized
NFs

(c) Integration of blackbox servers and traditional middleboxes.
Metron load balances traffic classes across multiple NIC queues
to scale multi-core blackboxes.

Fig. 6. Metron’s approaches for integrating various types of blackbox packet processing functions.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:14 G.P. Katsikas et al.

Hardware-assisted Virtual Blackbox Integration
Metron also allows integration of arbitrary blackbox functions deployed on VMs and/or containers.

This approach is depicted in Figure 6b. Traditional systems use software switches, such as Open

vSwitch (OVS) [92], to dispatch packets to VMs/containers. In contrast, Metron uses the mapping

of tags associated with its synthesized traffic classes to accurately dispatch these traffic classes to

the correct VMs/containers, avoiding the need for a software switch. This mapping can efficiently

be implemented through hardware rules, leveraging SR-IOV [13].

SR-IOV allows VMs to open a VNIC, allowing the VM to access a slice of a physical NIC’s

resources without involving the host or a hypervisor. A VNIC appears to its VM as a physical NIC

running its own driver and managing its own resources. Metron instructs a physical NIC to direct

packets matching the traffic classes of a VM to its dedicated VNICs. When a single VNIC is used

by a VM that uses multiple cores, one could rely on RSS to dispatch packets to multiple queues.

However, this approach does not leverage Metron’s accurate and load-aware traffic dispatching.

To that end, Metron instructs the physical NIC to tag the packets according to the core associated

with this traffic class by the controller. The tag can then be used to dispatch packets to queues just

as a Metron agent does (i.e., using explicit rules directing packets to cores according to the tags).

Note that some older NICs, such as Intel’s 82599 ES [38], provide VNICs with only a single (Rx and

Tx) pair of queues. Therefore, Metron also allows allocation of one VNIC per core of the VM, thus

requiring the VM operator deal with multiple VNICs.

Integration of Traditional Middleboxes
Finally, as shown in Figure 6c, Metron allows the integration of hardware blackbox devices (e.g.,

traditional middleboxes) in a service chain. If such a blackbox device is placed between two Metron

service chains, Metron uses the same partial synthesis approach described above. The top part in

Figure 6c shows how Metron instructs the NIC before a blackbox NF to load balance the various

traffic classes heading to this blackbox NF. In the case of a traditional middlebox, Metron cannot

access its resources (e.g., NICs), as shown at the bottom part in Figure 6c; in this case Metron’s

scaling will be limited by the number of physical instances of this middlebox. In §5.4 we demonstrate

a practical use case with a blackbox NF between two Metron service chains.

If no classification equipment is available between the blackbox and a subsequent Metron device,

then it is impossible to re-classify the traffic into the traffic classes synthesized by the second

service chain. In this case, one can tag packets before they leave the first service chain and use

these tags to dispatch packets to the correct cores executing the second service chain. This is only

possible when the blackbox does not modify the tags. However, a blackbox might remove or rewrite

tags applied by an earlier Metron instance. Consequently, packets will arrive at the subsequent

Metron instance without the correct tags; therefore, Metron will need to re-classify the traffic using

a software-based classifier before forwarding packets to the actual second service chain.

4 Dynamic Scaling
In §2.3.1 we explained how Metron encodes a service chain as a set of traffic classes, where each

traffic class is a set of packet filters mapped to write operations. This abstraction gives great

flexibility when scaling a service chain in/out. As an example, when E2 detects an overloaded NF,

it scales this NF by introducing an additional (duplicate) instance of the entire NF and then evenly

splits the flows across the two instances. In contrast, Metron splits the traffic classes of this NF

across the two instances, such that each instance executes only the code responsible for each of its

traffic classes (rather than the code of the entire NF).

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:15

Traffic Class-level Scaling
When creating a service chain’s traffic classes we leverage a grouping technique. A set of T traffic

classes {TC j
i | j ∈ [1,T] } that belong to service chain i can be grouped together, if and only if their

packet filters {Φj
i | j ∈ [1,T] } are mapped to the same write operations: ∀k, l ∈ [1,T],Ωk

i = Ωl
i .

For example, an HTTP and a File Transfer Protocol (FTP) traffic classes heading to a Network

Address and Port Translation (NAPT) will both exhibit the same stateful write operations from this

NF, thus they can be grouped together. The Metron controller has this information available once

the traffic classes of a service chain are created (see §2.3.1).

Scaling Strategy
Figure 7 visualizes the scaling strategy followed by Metron, when the load of a group of traffic

classes processed by a core exceeds or falls below a predefined threshold.

First we describe the case when a CPU core is overloaded. We use the example case shown in

Figure 7a, where CPU core 1 is the overloaded core. In this case, the Metron controller dynamically

scales out the group of traffic classes processed by this core by splitting this group into two

subgroups. The first subgroup remains on the same CPU core as the original group (i.e., core 1),

while the second subgroup is moved to a different (non-overloaded) CPU core (i.e., core 2). For this

move to be successful, the Metron controller first migrates the state of the affected flows (step 2 in

Figure 7b) and then updates the tag of the NIC rules that match these flows in order to dispatch

them to the assigned CPU core (step 3 in Figure 7b). We call this mechanism “traffic class deflation”

to differentiate it from its inverse “traffic class inflation” process (explained in the next paragraph).

Server Core 1

Core 3

NIC

Core 2

Stateful Operations

Stateful Operations

Input
Traffic

Over
Loaded
1

(a) Detection of overload event on CPU core 1 with
4 flows (step 1).

Server Core 1

Core 3

NIC

Core 2

Stateful Operations

Stateful Operations

Updated tag
of flow rules

Stateful Operations

Input
Traffic

3

2 Migrate flows’ state

(b) Flows’ state migration to core 2 (step 2) and
update of the corresponding flow rules’ tag (step 3).

Server Core 1

Core 3

NIC

Core 2

Stateful Operations

Stateful Operations

Stateful Operations

Input
Traffic

Under
Loaded

1

Under
Loaded

(c) Detection of underload events on CPU cores 2
and 3 with 1 flow each (step 1).

Stateful Operations

Server Core 1

Core 3

NIC

Core 2
Stateful Operations

Updated tag
of flow rule

Stateful Operations

Input
Traffic

3
2 Migrate flow state

(d) Flow state migration to core 3 (step 2) and update
of the corresponding flow rule’s tag (step 3).

Fig. 7. Metron’s dynamic scaling strategy during CPU core overload (a and b) and CPU core underload
(c and d) events.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:16 G.P. Katsikas et al.

When Metron detects low CPU utilization, traffic class inflation can merge two or more groups

of traffic classes that exhibit the same write operations. The detection of such an event is visualized

in Figure 7c, where CPU core 2 is underloaded. The Metron controller reacts to this event by first

moving the state of the flow served by core 2 to another underloaded core (i.e., core 3), as shown

by step 2 in Figure 7d. Then, a rule update follows, which instructs the server’s NIC to dispatch the

affected flow to CPU core 3 using a tag associated with that core (step 3 in Figure 7d). If this tag is

the same as that of an existing traffic class then inflation of that traffic class has occurred.

The following paragraphs provide details about the internals of Metron’s scaling mechanism,

including a suggestion for future work on how to provide strong state consistency guarantees.

Details about Scale Out Events (or Traffic Class Deflation)
The Metron controller periodically queries the load of the active CPU cores (i.e., those executing

stateful operations) of the servers. The default frequency for monitoring server resources is set

to 1 Hz, but Metron allows network operators to tune this parameter dynamically. The controller

remembers the load of these CPU cores at the last clock tick and computes the expected future

load at the next clock tick (L̂t+1). This value is computed as the sum of the current load and the

difference between the current load and the load at the last clock tick, as follows:

L̂t+1 = Lt + (Lt − Lt−1) (1)

Then, the controller stores the set of overloaded CPU cores, i.e., those that exhibit current or

expected future load above a given threshold that we call the overload threshold. The default value

of the overload threshold is set to 75%. The predicted future load is used to ensure that a core is

correctly and timely (i.e., early on) characterized as “loaded”. More sophisticated load prediction

schemes are left as future work.

Details about Scale In Events (or Traffic Class Inflation)
A second set of underloaded CPU cores with their previous, current, and predicted future load

values is stored by the controller. A core is characterized as underloaded when its previous, current,

and future load values are below the underload threshold (with a default value of 25%). We consider

all three values (i.e., previous, current, and future load) to avoid oscillations due to temporary

events, e.g., deactivating a core because its load is temporarily low. Metron exposes knobs so that

network operators can dynamically adjust the overload/underload thresholds.

Our experiments in §5.6.2 demonstrate that the (re)configuration of a network’s classification

equipment (e.g., an OpenFlow switch or a NIC) may take up to (several) seconds, depending on

the device and the number of rules to be installed/updated. For this reason, recovering from a bad

scaling decision may take a long time. To prevent this from happening, it is crucial to prioritize one

of the two scaling events. We designed Metron’s scaling system with a focus on prioritizing scale

out events, thus Metron splits the load of the CPU core with the highest load first. After all scale

out events are addressed, then Metron handles scale in events for the underloaded cores.

Ensuring Stable Scaling Decisions
Migrating the traffic classes handled by an underloaded core to a non-overloaded core might

sometimes be risky. The controller must choose a candidate core that is unlikely to become

overloaded after the migration has concluded. Therefore, Metron migrates traffic classes of

underloaded cores only to other underloaded cores. Similarly a scale in operation should be avoided

if the sum of the load on the core to be released together with the load on the core to host the

migrated traffic class(es) exceeds the overload threshold. This countermeasure prevents oscillations

between scale out and scale in events, which might increase the latency of the flows being migrated.

For the same reason, Metron prevents a scaling decision being made while the effect of the

previous scaling event has not yet been experienced. The controller remembers the time when the

last scaling event of each CPU core occurred. In case of a scale out operation, the time is measured

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:17

from when the core starts to report some load. Further scaling operations are then inhibited for

each core for at least 5 seconds since the last scaling operation.

Split and merge operations may repeat until Metron can no longer split/merge a group of traffic

classes. A group with a single traffic class is an example of an unsplittable group of traffic classes.

The reaction time of our scaling strategy is primarily affected by the time required for the controller

to monitor and reconfigure the data plane. §5.5 shows how this strategy performs in practice.

Discussion about State Migration
We use the concrete example shown in Figure 7 to explain how Metron performs state migration

during scaling operations. S6 [110], StateAlyzr [53], OpenNF [28], or the work by Olteanu and

Raiciu [82] could be integrated into Metron to provide more efficient state management solutions.

Alternatively, state management could be delegated to a remote distributed store as per Kablan, et

al. [41]. We leave the integration of sophisticated state migration techniques as future work, as this

is outside the focus of this article.

5 Evaluation
In this section we evaluate performance and scalability aspects of Metron as well as the

interoperability between Metron and blackbox NFs. §5.1 describes how we implemented Metron,

while §5.2 outlines the testbed used to conduct the experiments. §5.3 benchmarks the data plane

performance of standalone Metron service chains, while §5.4 demonstrates how blackboxes are

integrated with Metron service chains. In §5.5, §5.6, and §5.7 Metron’s dynamic scaling, deployment

micro-benchmarks, and large scale placement emulations are presented (respectively).

5.1 Implementation
The Metron controller [46] is built on top of ONOS [9, 85], an open source, industrial-grade

system that is designed to scale well. Key to this decision was the fact that ONOS exposes unified

abstractions for a large variety of drivers that cover popular network configuration protocols, such

as OpenFlow [67], P4 [14], Network Configuration Protocol (NETCONF)/YANG [12, 24], REST, and

Simple Network Management Protocol (SNMP) [17]. ONOS was extended with a new driver to

remotely monitor and configure servers and their NICs. This driver is available at [43].

Metron’s data plane [5] extends FastClick [8]. The Virtual Machine Device queues (VMDq) of

DPDK [103] are used for hardware dispatching based on the value of the destination Medium

Access Control (MAC) address or Virtual Local Area Network (VLAN) ID fields. Metron uses the

former header field as a filter, because the large address space of a MAC address provides unique

tags for trillions of service chains. Each server requires as many tags (or virtual MAC addresses) as

the number of its CPU cores. To scale to 100Gbps, Metron configures the hardware classifiers of

Mellanox ConnectX-4 MT27700 [70] and ConnectX-5 MT27800 [73] NICs (see §5.3.2 and §5.4). In

this case, Metron associates NIC hardware queue IDs with a server’s CPU cores, acting as tags.

Metron uses DPDK for packet input-output (I/O). DPDK completely bypasses the Operating

System (OS)’s kernel at run-time, by implementing Poll Mode Drivers (PMDs) for packet I/O,

directly in user-space. PMDs do not rely on hardware interrupts to wait for incoming packets;

instead, the CPU polls the state of the hardware ring buffers to process packets as soon as they

are available. While this approach has low latency and high throughput, the CPU load will always

be 100%. In order to make scaling decisions (see §4) based upon CPU load information, Metron’s

data plane counts the number of cycles spent for actual packet processing (defined as UsefulCycles)

and the number of cycles spent trying to query a NIC for packets but that find an empty ring

(UselessCycles). At a frequency of 10Hz, we divide the UsefulCycles by the sum of UsefulCycles

and UselessCycles to compute the actual current load per core.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:18 G.P. Katsikas et al.

5.2 Testbed
Our testbed consists of five almost identical servers, each with a dual-socket CPU with 8 cores

per socket. Three of these servers have an Intel
®
Xeon

®
E5-2667 v3 (Haswell) CPU clocked at

3.20GHz and 128GB of DDR4 RAM at 2133MHz. Each core has 2x32 KB L1 (instruction and data

caches) and 256KB L2 caches, while one 20480KB L3 cache is shared among the cores in each

socket. The remaining two servers have an Intel
®
Xeon

®
Gold 6134 (SkyLake) CPU clocked at

3.20GHz and 256GB of DDR4 RAM at 2666MHz. Each core has 2x32 KB L1 (instruction and data

caches) and 1024KB L2 caches, while one 25344KB L3 cache is shared among the cores in each

socket. Hyper-threading is disabled on all servers and the OS is the Ubuntu 16.04.2 distribution

with Linux kernel v.4.4.

Testbed at 40Gbps
Network operators typically use a switched infrastructure to interconnect multiple servers, thus

facilitating scaling and traffic steering. Modern switches are programmable, hence some packet

processing operations can be offloaded, thus reducing the processing demands at the servers. Two

Haswell servers are used in the testbed shown in Figure 8a, each with two dual port Intel 82599

ES NICs [38] (with a total capacity at 40Gbps). In this testbed, two programmable switches are

used interchangeably: a NoviFlow 1132 switch with firmware version NW400.2.2 and an HP 5130

EI switch [34] with software version S5130-3106. The former is a powerful multi-port 10GbE

OpenFlow switch used to evaluate the deployment presented in §5.3.1. The latter is a hybrid (i.e.,

legacy and OpenFlow-based) switch used to assess how hardware diversity affects Metron (§5.6.2).

Haswell Traffic
Generator/Sink

4x10 GbE

Programmable
Haswell Server

Programmable
Switch

4x10 GbE
(a) Deployment at 40Gbps using two Haswell servers, each with two dual-port 10GbE Intel 82599 ES
NICs [38], interconnected through a programmable (i.e., OpenFlow) switch.

Haswell Traffic
Generator/Sink

Programmable
Haswell Server

Skylake Traffic
Generator/Sink

Programmable
Skylake Server

100 GbE Mellanox ConnectX-5 NICs

100 GbE Mellanox ConnectX-5 NICs
(b) Deployment at 100Gbps using two (Haswell or SkyLake) servers connected back-to-back, each with
one 100GbE Mellanox ConnectX-5 MT27800 [73]) NIC.

Fig. 8. Topologies used to evaluate different aspects of Metron throughout this article. The left-most server
in each topology acts as a traffic generator and sink. The remaining nodes (servers and/or switches) are used
for packet processing.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:19

Testbeds at 100Gbps
To further stress the performance limits of NFV service chains, a 100GbE testbed is used as shown

in Figure 8b. This testbed has two variants. First, the top part in Figure 8b shows two back-to-back

connected Haswell servers using 100GbE Mellanox ConnectX-5 MT27800 NICs [73]. This testbed

is similar to the 100GbE testbed used by an earlier version of Metron [48] with the only difference

being the replacement of the 100GbE Mellanox ConnectX-4 MT27700 NICs [70] with the newer

100GbE Mellanox ConnectX-5 MT27800 NICs [73]. This replacement allows us to improve upon

the results reported in [48], as the NIC was one of the hardware limitations of the earlier testbed.

To completely remove the bottlenecks of the testbed shown in the top of Figure 8b, thereby

enabling line-rate processing at 100Gbps, the configuration shown in the bottom part of Figure 8b

was also deployed. In this latter testbed, two SkyLake servers are equipped with the same 100GbE

Mellanox ConnectX-5 MT27800 NICs [73]. In §5.3.2 a stateful service chain is evaluated on both

hardware architectures. In §5.4 we use a larger 100GbE testbed with both Haswell and SkyLake

servers to showcase how Metron coexists with blackboxes.

Relevant details
The leftmost server in each topology shown in Figure 8 acts as a traffic generator and receiver. In

all of the experiments, another server (not present in Figure 8) is used to run the Metron controller.

Each experiment was conducted 10 times and we report the 10
th
, 50

th
, and 90

th
percentiles.

5.3 Large-Scale Deployment of Standalone Metron Service Chains
We test Metron’s data plane performance at scale using complex service chains with a large number

of deeply-inspected (§5.3.1) and stateful (§5.3.2) traffic classes at 40 and 100Gbps (respectively).

5.3.1 Deep Packet Inspection at 40 Gbps We begin with an experiment at 40Gbps using a service

chain of a campus firewall followed by a DPI NF, deployed on the programmable Haswell server of

the testbed shown in Figure 8a. The firewall NF implements an Access Control List (ACL) of 1000

rules, derived from a campus trace; these rules match all the packets of this trace. The output of

the firewall is sent to a DPI NF that uses a set of regular expressions similar to Snort (see [16]).

We compare Metron against two state of the art systems: (i) an accelerated version of the

OpenBox data plane based on RSS and (ii) an emulated version of E2. In the latter case, we emulate

E2’s SoftNIC by using a dedicated CPU core (i.e., core 1) to dispatch packets to the remaining CPU

cores of the server (i.e., cores 2-16), where the NFs of the service chain are executed. As a result, all

of the graphs of the emulated E2 in §5.3 starting from core two.

We injected the campus trace at 40 Gbps and measured the performance of the three approaches.

First, we deploy only the firewall NF of this service chain to quantify the overhead of running

this NF in software, as compared to an offloaded firewall (Metron offloaded the firewall to the

programmable switch as shown in Figure 8a). Figures 9a and 9b show the results of this experiment,

while Figure 9c visualizes the CPU core allocation with respect to the server’s Non-UniformMemory

Access (NUMA) regions used in this experiment. To fairly compare Metron against the other two

approaches, we run a simple RSS-based forwarding NF in the server, such that all packets follow

the exact same path (generator, switch, server, switch, and sink) in all three experiments.

Figure 9a shows that OpenBox and the emulated E2 can realize the firewall NF at line-rate.

However, this is only possible if more than half of the server’s CPU cores are utilized. Specifically,

OpenBox requires 9 CPU cores, while the emulated E2 requires 11 CPU cores. In contrast, Metron

completely offloaded the firewall to the switch, hence easily realizing its ACL at line-rate; thus one

core of the server is sufficient to achieve maximum throughput.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:20 G.P. Katsikas et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

 Firewall - Metron
 Firewall - OpenBox RSS
 Firewall - Emulated E2

(a) Throughput (Gbps).

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 (
m

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

 Firewall - Metron
 Firewall - OpenBox RSS
 Firewall - Emulated E2

(b) Latency (ms) on a logarithmic scale.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA 0 NUMA 1 NUMA 0 NUMA 1 NUMA 0 NUMA 1 NUMA 0 NUMA 1 NUMA 0 NUMA 1 NUMA 0 NUMA 1 NUMA 0 NUMA 1 NUMA 0 NUMA 1

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

(c) Mapping of physical CPU core IDs to NUMA nodes on an Intel®Xeon® E5-2667 v3.

Fig. 9. Performance versus number of CPU cores of a campus firewall with 1000 rules using: (i)Metron with
the firewall being offloaded, (ii) an accelerated version of OpenBox using RSS, and (iii) a software-based
dispatcher emulating E2.

Looking at the latency of the three approaches in Figure 9b, it is evident that software-

based dispatching (dark blue triangles) incurs a large amount of latency. Hardware dispatching

using RSS (green circles) achieves substantially lower latency because it involves less inter-core

communication. However, since the firewall executes computationally demanding classification

operations in software, OpenBox still exhibits high latency that cannot be decreased simply by

increasing the number of cores. As an example, using 16 CPU cores has comparable latency to 4

CPU cores. In contrast, Metron achieves nearly constant low latency (red squares) by exploiting

the switch’s ability to match a large number of rules at line-rate. This latency is 2.9-4.7x lower than

the latency of OpenBox and the emulated E2 (respectively), when each system uses one core for

processing the NF (note that the emulated E2 requires 2 CPU cores in this case). At the full capacity

of the server (i.e., 16 cores), the latency of the three systems is comparable; but Metron achieves

30% and 19% lower latency than the emulated E2 and OpenBox systems respectively.

Next, the example campus firewall is chained with a DPI NF in order to realize the entire service

chain. This chain pushes the performance limits of the three approaches as shown in Figure 10. In

this scenario, Metron implements DPI in software. First, we observe that even when using all of the

server’s CPU cores, OpenBox and the emulated E2 can only achieve at most 25 Gbps (see Figure 10a).

This performance is more than sufficient for a 10Gbps deployment, hence some operators might not

need the complex machinery of Metron. However, several studies indicate that large networks have

already migrated from 10 to 40Gbps deployments [19], while 100Gbps networks are increasingly

gaining traction [109]. In these higher data rate environments, these alternatives would require

more than 16 CPU cores (and potentially more than one server) to achieve sufficient throughput,

and are not guaranteed to scale because of the processing requirements of large service chains.

Metron exploits the combined network and server capacity to scale even complex NFs, such

as DPI, at the speed of the hardware. This can be confirmed by comparing the red squares (i.e.,

“Metron”) with the black crosses (i.e., “Hardware Limit RSS”) in Figure 10a. Metron requires only 10

CPU cores in a single server to achieve this result, thus substantially shifting the scaling point for

large service chains. The latency results in Figure 10b further highlight Metron’s abilities. With

16 CPU cores, Metron deeply inspects all packets for this service chain at the cost of only 15.5%

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:21

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

 Hardware Limit RSS
 Firewall + DPI - Metron
 Firewall + DPI - OpenBox RSS
 Firewall + DPI - Emulated E2

(a) Throughput (Gbps).

 1

 2

 4

 8

 16

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
at

en
cy

 (
m

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

 Hardware Limit RSS
 Firewall + DPI - Metron
 Firewall + DPI - OpenBox RSS
 Firewall + DPI - Emulated E2

(b) Latency (ms) on a logarithmic scale.

Fig. 10. Performance versus number of CPU cores of a campus firewall with 1000 rules followed by a DPI
using: (i)Metron with the firewall being offloaded, (ii) an accelerated version of OpenBox using RSS, and
(iii) a software-based dispatcher emulating E2. “Hardware Limit RSS” showcases the speed of the hardware,
using the firewall NF offloaded into an OpenFlow switch followed by an RSS-based forwarding NF at the
server. The two different font colors represent the location of each core with respect to the server’s NUMA
regions, as shown in Figure 9c.

higher latency than the minimum latency of this testbed, shown with black crosses. At the same

time, OpenBox and the emulated E2 incur 35-97% higher latency than Metron, while achieving

roughly half of Metron’s throughput. The difference in latency increases rapidly when fewer

cores are utilized. For example, when each system uses one core, Metron achieves 75% and 358%

lower latency than OpenBox and the emulated E2 (respectively). Moreover, Metron’s performance

increases linearly with increasing number of cores, while both OpenBox and the emulated E2

systems exhibit severe performance fluctuations (e.g., OpenBox with 11 cores performs better than

OpenBox with 15 or 16 cores). This highlights that part of Metron’s performance stems from better

load balancing.

5.3.2 Stateful Service Chaining at the Speed of 100 Gbps NICs The emerging 100GbE deployments

in datacenters will challenge the performance limits of NFV systems [23, 57, 109]. In this section

we show how Metron allows network operators to deliver the expected levels of performance.

To further stress the performance of Metron, OpenBox, and the emulated E2 systems, we

conducted experiments using the 100GbE testbeds shown in Figure 8b. All the experiments in this

section were conducted with NUMA-aware CPU core allocation, which is different from the CPU

core allocation followed in §5.3.1 and [48].

We analyzed all 24 million packets of the campus trace used in §5.3.1 and derived 3597 distinct

Internet Protocol (IP) prefixes that match all destination IP addresses. Then, we implemented a

standards-compliant router and populated its routing table with these prefixes. This router was

chained with two stateful NFs: a NAPT and a Load Balancer (LB) that implements a flow-based

round robin policy across 5 destination servers. In this scenario, Metron can only offload the routing

table of the router to the Mellanox NIC using DPDK’s flow API [104]. The remaining functions of

the router, such as Address Resolution Protocol (ARP) handling, IP fragmentation, Time to Live

(TTL) decrement, etc., together with the stateful NFs (i.e., NAPT and LB) are executed in software.

Metron vs. State of the art
The throughput achieved by the three systems on two different hardware architectures is shown in

Figures 11a and 11b. The results on both hardware architectures show a slow but linear increase

in throughput with an increasing number of CPU cores for both OpenBox and the emulated E2

approaches. Using linear regression on the medians, we found that the throughput of OpenBox

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:22 G.P. Katsikas et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

Hardware Limit RSS
Metron

OpenBox RSS
Emulated E2

(a) Throughput (Gbps) on an Intel Xeon E5-2667 v3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores (Intel Xeon Gold 6134 at 3.2 GHz)

Hardware Limit RSS
Metron

OpenBox RSS
Emulated E2

(b) Throughput (Gbps) on an Intel Xeon Gold 6143.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

L
at

en
cy

 (
m

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

Hardware Limit RSS
Metron

OpenBox RSS
Emulated E2

(c) Latency (ms) on an Intel Xeon E5-2667 v3.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

L
at

en
cy

 (
m

s)

Number of CPU Cores (Intel Xeon Gold 6134 at 3.2 GHz)

Hardware Limit RSS
Metron

OpenBox RSS
Emulated E2

(d) Latency (ms) on an Intel Xeon Gold 6143.

Fig. 11. Performance of a stateful service chain (Router�NAPT�LB) at 100Gbps on two different hardware
architectures by Intel (Haswell on the left and Skylake on the right) using a 100GbE Mellanox ConnectX-5
NIC, achieved by: (i) Metron with the routing table of the Router NF being offloaded, (ii) an accelerated
version of OpenBox using RSS, and (iii) a software-based dispatcher emulating E2. “Hardware Limit RSS”
shows the forwarding speed of the server (i.e., no service chain) using RSS as a traffic dispatcher.

increases by 4.54 Gbps/core on the Haswell architecture and by 4.27Gbps/core on the SkyLake

architecture. The maximum throughput achieved by OpenBox is 73Gbps and 65.6 Gbps on the

Haswell and SkyLake architectures respectively. Despite using the same Haswell server, Figure 11a

reports higher throughput than reported in Figure 7a in [48]. This is due to: (i) the different CPU
core allocation strategy and (ii) a different Mellanox NIC than used in [48].

Performing a similar linear regression on the medians between 2 and 12 cores for the emulated

E2 system (dark blue triangles in Figures 11a and 11b) shows an increase by 4.94Gbps/core and

by 4.91Gbps/core on the Haswell and SkyLake architectures respectively. However, in both cases

using more than 12 CPU cores results in substantial performance degradation due to an increasing

amount of inter-core communication.

In contrast, Metron matches the performance limits of the underlying hardware on both

architectures. This is shown by comparing the red squares with the black crosses in Figures 11a

and 11b. More importantly, Metron achieves these results while using only a small fraction of the

server’s CPU cores. Key to this performance is Metron’s hardware dispatcher in the NIC, which

offers two advantages: it (i) saves CPU cycles by performing the destination IP lookup operations

of the router and (ii) load balances the traffic classes matched by the hardware classifier across the

available CPU cores. Exploiting these advantages allows Metron to quickly achieve throughput

comparable to the “Hardware Limit RSS” case using only 3-4 cores, despite performing several

stateful operations (i.e., NAPT and LB) in software.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:23

Note that the maximum attainable throughput of the hardware on the Haswell architecture is

limited to 85Gbps. The maximum attainable throughput on the same architecture using an older

generation of Mellanox NICs (i.e., ConnectX-4 instead of ConnectX-5) and different CPU core

allocation strategy was 76Gbps [48]. This means that with the upgraded testbed we managed to

partially address the hardware performance bottlenecks reported in [48]. In contrast, near line-rate

processing (i.e., 98.5-98.9 Gbps) is achieved by Metron and “Hardware Limit RSS” cases on the

SkyLake architecture as shown in Figure 11b. According to a performance report by Mellanox [69],

the underlying ConnectX-5 NIC exhibits a slight throughput degradation when processing 64-byte

frames, while performing line-rate processing of frames larger or equal than 128 bytes. In the

injected trace, 26.9% of the frames have a size in the range of [50, 100] bytes, which may explain

why the maximum attainable throughput in Figure 11b tops out at 98.9 instead of 100Gbps.

Figure 11b shows a marginal throughput degradation of “Metron” as compared to the “Hardware

Limit RSS” for some CPU cores (i.e., 5 to 16) on the SkyLake architecture. This is a limitation of

the classification capabilities of the underlying NIC. To confirm this, we performed an additional

experiment (not shown in Figure 11), in which we replaced the Metron service chain’s (stateful)

software processing with a simple forwarding NF, while still using the same rules for NIC to

CPU core dispatching. This rule-based forwarding NF resulted in the same marginal throughput

degradation as “Metron”, when using 5-16 CPU cores. Despite this hardware limitation, Metron’s

rule-based load balancing outperforms RSS. We conclude this after checking the state (i.e., packet

and byte counters) of the active hardware queues in the NIC during this experiment.

Figures 11c and 11d show the latency of the three systems on the same two Intel architectures.

First, all three systems achieve sub-millisecond latency on both architectures. Second, by comparing

the dark blue triangles in Figures 11c and 11d we observe that SkyLake hides a large fraction of the

inter-core communication latency introduced by E2, resulting in comparable latency with OpenBox

(in some cases). This is in contrast with the case on the Haswell architecture were the latency

introduced by the emulated E2 dramatically increases between 5 and 16 cores, especially once

packets must cross the Quick Path Interconnect (QPI) between the two sockets. On the Haswell

architecture OpenBox achieves more than 4x lower latency than E2 (see Figure 11c), while up to

2x latency decrease is achieved by OpenBox on the SkyLake architecture. A comparison of the

red squares with the black crosses in Figures 11c and 11d shows that Metron achieves similar or

sometimes lower latency than the “Hardware Limit RSS” case. The latter is possible due to Metron’s

better load balancing of traffic across the available hardware queues. Specifically, Metron’s latency

ranges between 0.148-0.20ms on both architectures. This latency is at least 2x lower than the lowest

latency achieved by the other two systems on both architectures.

Dissecting Metron’s Performance
To quantify the factors that contribute to Metron’s high performance, we conducted an additional

experiment using the same testbeds, input trace, and service chain. The results are depicted in

Figure 12. Note that the curves with the red squares (i.e., Metron’s performance) in Figures 11

and 12 are identical. The purpose of Figure 12 is to showcase the expected performance penalties

when one starts removing our key contributions from Metron. More specifically:

(1) Metron without hardware offloading (i.e., dark cyan triangles in Figures 12). Hardware

offloading corresponds to Contribution 1 in §1.2;

(2) Metron without accurate hardware dispatching to the correct core (purple rhombs in

Figure 12). Accurate dispatching corresponds to Contribution 2 in §1.2;

(3) Metron without either of the contributions (gray stars in Figure 12).

Comparing “Metron” vs. “Metron w/o HW Offl.” (red squares vs. dark cyan triangles in Figure 12)

quantifies the benefits of Metron’s hardware offloading feature. In the “Metron w/o HW Offl.” case

input packets are still dispatched to the correct core (using the flow rule-based classifier of the

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:24 G.P. Katsikas et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

Metron
Metron w/o HW Offl. (O)
Metron w/o HW Disp. (D)
Metron w/o O and w/o D

(a) Throughput (Gbps) on an Intel Xeon E5-2667 v3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores (Intel Xeon Gold 6134 at 3.2 GHz)

Metron
Metron w/o HW Offl. (O)
Metron w/o HW Disp. (D)
Metron w/o O and w/o D

(b) Throughput (Gbps) on an Intel Xeon Gold 6143.

0.1

0.2

0.5

1

10

50

100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1

L
at

en
cy

 (
m

s)

Number of CPU Cores (Intel Xeon E5-2667 v3 at 3.2 GHz)

Metron
Metron w/o HW Offl. (O)
Metron w/o HW Disp. (D)
Metron w/o O and w/o D

(c) Latency (ms), on a logarithmic scale, on an Intel
Xeon E5-2667 v3.

0.1

0.2

0.5

1

10

50

100

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

NUMA Nodes 0 NUMA Nodes 0+1
L

at
en

cy
 (

m
s)

Number of CPU Cores (Intel Xeon Gold 6134 at 3.2 GHz)

Metron
Metron w/o HW Offl. (O)
Metron w/o HW Disp. (D)
Metron w/o O and w/o D

(d) Latency (ms), on a logarithmic scale, on an Intel
Xeon Gold 6143.

Fig. 12. Metron’s hardware offloading (O) and dispatching (D) contributions to the performance of a stateful
service chain (Router�NAPT�LB) on two different hardware architectures by Intel (Haswell on the left and
Skylake on the right) using a 100GbE Mellanox ConnectX-5 NIC. The word "without" is abbreviated as "w/o".

Mellanox NIC), but each core executes the entire service chain logic in software. The maximum

throughput achieved in this case (i.e., dark cyan triangles in Figures 12a and 12b) is slightly lower

than the throughput of the “OpenBox RSS” case shown in Figures 11a and 11b. However, as shown

in Figures 12c and 12d Metron realizes more than 2x lower latency than “Metron w/o HW Offl.”

due to its ability to perform hardware offloading. A key difference between “OpenBox RSS” and

“Metron w/o HW Offl.” is that the latter performs the routing table lookup twice; once in the NIC

for traffic dispatching and the second in software (to disable hardware offloading), after packets

are dispatched to the correct core. In contrast, OpenBox uses RSS for dispatching and implements

the routing table only once in software. This explains why the throughput of “Metron w/o HW

Offl.” does not further increase after using 13 or more CPU cores. Neither of these cases exploits

the NIC’s ability to offload the routing operations, thus costing CPU cycles.

Next, the comparison between “Metron” and “Metron w/o HW Disp.” (red squares vs. purple

rhombs in Figure 12) cases highlights the cost of inter-core communication. “Metron w/o HW Disp.”

implements the routing lookup in hardware (i.e., hardware offloading is enabled), hence reducing

the processing requirements of the software part of the service chain. However, this case exhibits a

serious bottleneck compared to Metron, as it requires a software component to (re-)classify input

packets to decide which CPU core should process them (i.e., software dispatching similar to the

emulated E2 case in Figures 11a and 11b). As shown in Figures 12a and 12b, both “Metron w/o HW

Disp.” (with purple rhombs) and the emulated E2 (with dark blue triangles in Figures 11a and 11b)

cases exhibit similar throughput degradation as their software dispatcher communicates with an

increasing number of CPU cores. This degradation appears earlier for “Metron w/o HW Disp.” (i.e.,

after 5 cores versus 12 cores for the emulated E2 case). This is because “Metron w/o HW Disp.”

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:25

offloads part of the service chain’s processing to the NIC, hence the inter-core communication

bottleneck appears sooner. In contrast, Metron exploits the ability of the NIC to directly dispatch

traffic to the correct core, thus avoiding the need for a software dispatcher and the concomitant

inter-core communication. As shown in Figures 12c and 12d, Metron’s accurate dispatching results

in 2-80x and 2-100x lower latency than “Metron w/o HW Disp.” on the Haswell and SkyLake

architectures respectively.

Finally, the “Metron w/o O and w/o D” case in Figures 12a and 12b shows the throughput

attainable when both hardware offloading and accurate dispatching features are disabled. In this

case, input packets are always sent to an “incorrect” core (specifically the core where the software

dispatcher runs) and the entire service chain runs in software. The inter-core communication

bottleneck manifests itself once again on both hardware architectures, this time after using 9

or more cores. The gray stars in Figures 12c and 12d indicate that the latency of this system is

substantially higher than Metron’s latency, especially when using few CPU cores. This occurs

because the processing demands of the service chain combined with the excessive amount of

inter-core communication prevent the system from effectively using its fast caches.

Key Outcome
As explained in §4, Metron’s ability to scale complex (i.e., DPI) and stateful (i.e., NAPT and LB)

NFs is due to the way that the incoming traffic classes are identified, tagged, and dispatched to the

CPU cores in a load balanced fashion. Metron’s ability to realize these service chains at the NICs’
hardware limit with a single server is an important achievement.

5.4 Metron with Integrated Blackbox NF
Blackboxes are typically employed by network operators to execute proprietary packet processing

code for specific purposes, such as routing and monitoring NFs using Cisco’s Cloud Services Router

(CSR) [20] and Snort’s DPI [99]). In the presence of blackboxes, achieving high performance while

provisioning resources on demand is hard, mainly because different blackboxes (i) exhibit different
processing bottlenecks and (ii) have different (or sometimes no) ways of adapting to changing

workloads. In this section we demonstrate how Metron orchestrates, not only native Metron service

chains (as demonstrated in §5.3), but also blackboxes.

Testbed
To show howMetron works in the case of a multi-server testbed, we implemented a service chaining

scenario that involves 4 servers as shown in Figure 13. From left to right, the traffic generator/sink

and server 2 are based on Intel’s SkyLake architecture, while servers 1 and 3 use Intel’s older

Haswell architecture. Each server is equipped with a dual-port 100GbE Mellanox ConnectX-5 NIC,

plugged into a Peripheral Component Interconnect Express (PCIe) 3.0 slot with 16 lanes associated

with CPU socket 0.

Skylake Traffic
Generator/Sink

Programmable
Haswell Server 1

100 GbE Mellanox ConnectX-5 NICs

Blackbox
Skylake Server 2

Programmable
Haswell Server 3

Router LBMonNAPTFirewall Proprietary NF

Fig. 13. Full-duplex deployment at 100Gbps using two SkyLake and two Haswell servers connected back-
to-back, each with a dual-port 100GbE Mellanox ConnectX-5 NIC. Server 1 runs a Firewall�NAPT service
chain, server 2 is used as a blackbox device, while server 3 runs a Router�Monitor�LB service chain.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:26 G.P. Katsikas et al.

Service Chaining Scenario
The first server acts as a traffic generator and sink; the injected traffic follows the green arrow

shown in Figure 13. The second server runs a firewall NF with 2384 rules followed by a NAPT.

The third server acts as a blackbox device on which a network operator can deploy proprietary

packet processing NFs. Later in this section we show different ways of integrating blackbox NFs

with Metron service chains. The fourth server executes a router with 2004 entries in its routing

table followed by a stateful monitor, and a stateful LB (identical to the LB used in §5.3.2).

Systems under Test
Using the service chaining scenario above, we compare three different Metron deployments against

two baseline approaches: The first baseline approach is a pure forwarding case in which all the

service chains on the 3 processing servers are replaced by simple forwarding NFs; this case is

labeled “Hardware Limit RSS” in Figure 14. The second baseline approach is the RSS-based OpenBox

integrated with a forwarding blackbox NF running on server 2; this system is labeled “OpenBox

RSS + BB (RSS Disp + FWD)”.

The three Metron deployments run identical code on servers 1 and 3, but differ in the blackbox NF

on server 2. In the first Metron deployment, labeled “Metron + BB (RSS Disp + FWD)”, the blackbox

server runs the same native RSS-based forwarding application used by the baseline cases (i.e.,

OpenBox and the “Hardware Limit RSS”). In the second (“Metron + VM BB (TC Disp + FWD)”) and

third (“Metron + VM BB (TC Disp + DPI)”) Metron deployments, we replace the native forwarding

NF with a VM running the same NF (i.e., RSS-based forwarding) and a DPI NF (i.e., the same DPI

NF used in §5.3.1) respectively. In both cases, Metron uses SR-IOV to dispatch traffic to the correct

VNIC of the VM in a traffic class-aware manner as explained below. In the following paragraph, we

discuss some practical considerations that motivated our evaluation choices.

Handling Flow States
In a real deployment scenario, the return path (i.e., from right to left towards the traffic sink) of the

testbed shown in Figure 13 must be carefully provisioned to ensure that all returning flows are

dispatched to the core that previously handled these flows in the forward direction. This ensures

flow state consistency with respect to the stateful NAPT and monitor tables of the corresponding

NFs. However, due to the presence of the NAPT NF, flow headers are modified by server 1, hence

the RSS-based baseline systems (i.e., OpenBox and the “Hardware Limit RSS”) hash (some of) these

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores

Hardware Limit RSS
Metron + BB (RSS Disp + FWD)

OpenBox RSS + BB (RSS Disp + FWD)

(a) Throughput (Gbps).

0.3

0.5

1.0

2.0

 1 2 3 4 5 6 7 8

L
at

en
cy

 (
m

s)

Number of CPU Cores

Hardware Limit RSS
Metron + BB (RSS Disp + FWD)

OpenBox RSS + BB (RSS Disp + FWD)

(b) Latency (ms) on a logarithmic scale.

Fig. 14. Full-duplex performance of two stateful service chains running on two different servers and a
blackbox NF running on a third server at 100Gbps using: (i) Metron and (ii) an accelerated version of
OpenBox using RSS. The blackbox server executes a native RSS-based forwarding NF. “Hardware Limit RSS”
shows the forwarding speed of the testbed (i.e., no service chain) using RSS as a traffic dispatcher on all
servers. All the CPU cores used in this experiment belong to NUMA node 0.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:27

modified flows differently, on their way back to the traffic sink. Metron has an efficient solution to

this problem as it can install a mirrored version of the forward path’s rules in the corresponding NICs

to perform traffic dispatching of packets on the return path. Metron also detects the presence of flow

modification elements (e.g., a NAPT) in a service chain, hence the rules for the return path could

be crafted accordingly. Implementing a flow state affinity element for OpenBox and the “Hardware

Limit RSS” systems was possible, but would introduce performance degradation. Therefore, to

provide a fair comparison between Metron and Openbox without affecting the performance of the

latter system, we deliberately simplified Metron’s return processing path to use the same RSS-based

forwarding NF used by OpenBox and the “Hardware Limit RSS” systems.

Performance Evaluation (Experiments with a Native Blackbox NF)
As shown by the black crosses in Figure 14a, the end-to-end throughput of this testbed is limited to

around 40Gbps because the Haswell servers (i.e., servers 1 and 3) cannot forward more than 80

Gbps of full-duplex traffic using the Mellanox ConnectX-5 NICs. The green circles in Figure 14a

show that the throughput of OpenBox is capped around 19Gbps using 8 CPU cores. According to

the green circles in Figure 14b, the latency introduced by OpenBox is between 1.5 and 1.6ms. This

performance is several times worse than the maximum attainable performance (i.e., the “Hardware

Limit RSS” case), mainly because the firewall at server 1 implements 2384 rules in software, which

becomes the biggest bottleneck. On server 3 OpenBox also implements a software IP lookup element

with 2004 rules, but this classifier is faster than the firewall as it contains fewer rules, only involving

a single header field (i.e., destination IP address).

In contrast, the native Metron case, labeled “Metron + BB (RSS Disp + FWD)” and depicted by the

red squares in Figure 14, offloads the classifiers of the Firewall and Router NFs in the corresponding

Mellanox NICs. Therefore, Metron quickly realizes the maximum attainable throughput with 2

cores and the lowest attainable latency using only 4 cores. Although Metron matches the speed of

the “Hardware Limit RSS”, its performance can be further optimized. Specifically, the “Metron +

BB (RSS Disp + FWD)” case only loosely integrates the blackbox server, as Metron has no way to

scale this server along with the other Metron service chains. Instead, the blackbox server relies on

RSS to perform traffic dispatching, independently of the other two servers, which are dynamically

controlled by Metron. To solve this problem, we implemented an alternative approach to integrate

blackboxes (introduced in §3), while dynamically adjusting the amount of traffic sent to each of the

available cores of the blackbox. We evaluate this approach below (see Figure 15).

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8

T
h

ro
u

g
h

p
u

t
(G

b
p

s)

Number of CPU Cores

Hardware Limit RSS
Metron + VM BB (Metron Disp + FWD)
Metron + VM BB (Metron Disp + DPI)

(a) Throughput (Gbps).

0.3

0.5

1.0

2.0

 1 2 3 4 5 6 7 8

L
at

en
cy

 (
m

s)

Number of CPU Cores

Hardware Limit RSS
Metron + VM BB (Metron Disp + FWD)
Metron + VM BB (Metron Disp + DPI)

(b) Latency (ms) on a logarithmic scale.

Fig. 15. Full-duplex performance of two stateful service chains running on two different servers and a
blackbox NF running on a third server at 100Gbps using Metron. The blackbox server runs a VM, which
executes either (i) a forwarding or (ii) a DPI NF, orchestrated by Metron. Metron dispatches traffic classes to
the VM. “Hardware Limit RSS” shows the forwarding speed of the testbed (i.e., no service chain) using RSS
as a traffic dispatcher on all servers. All the CPU cores used in this experiment belong to NUMA node 0.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:28 G.P. Katsikas et al.

Performance Evaluation (Experiments with a Virtualized Blackbox NF)
Blackboxes might run pieces of software that cannot be synthesized, such as a closed-source VM. To

evaluate this case, we implemented “Metron + VM BB (TC Disp + FWD)” by placing the forwarding

NF inside a VM. This case is depicted with the empty pink pentagons in Figure 15. Metron manages

and load balances this VM, even though it has no insight about what code the VM executes. This is

possible by designating a set of traffic classes of interest to this VM. Metron then employs SR-IOV

on the physical NIC of the blackbox to load balance incoming packets matching those traffic classes

to the VNICs of the VM. As mentioned in §3, incoming packets are also tagged, by rewriting their

destination MAC address according to the target CPU core assigned by Metron. In this experiment

Metron installs the rules in the Mellanox NICs; however, a different tagging scheme using e.g., an

OpenFlow switch before the blackbox device, could be used as well (see the 40Gbps experiment

shown in §5.3.1). If a VM uses fewer VNICs than the number of processing CPU cores, Metron can

associate tags with hardware queues which can be accessed by the target CPU cores. The empty

pentagons in Figure 15 show that Metron’s hardware-based VM dispatching performs as well as

the native Metron dispatching. This is because Metron facilitates direct traffic class dispatching to

the correct core of the correct VM, avoiding the need for costly software-based switching.

Finally, in the “Metron + VM BB (TC Disp + DPI)” case, shown with filled pentagons in Figure 15,

we replaced the VM’s forwarding NF with a DPI NF. We study this case to show Metron’s

performance when a blackbox becomes the bottleneck. Even with such a demanding blackbox,

Metron can easily saturate a 10Gbps link using 4 cores, while achieving an almost linear throughput

increase with an increasing number of CPU cores. Specifically, fitting a linear equation to the median

values of the filled pentagons in Figure 15a strongly suggests (R2
of 0.999) that each additional core

contributes 2.45Gbps of additional throughput.

Note that the performance of the “Metron + VM BB (TC Disp + DPI)” case (filled pentagons in

Figures 15a and 15b) is slightly higher than the performance achieved by the “OpenBox RSS + BB

(RSS Disp + FWD)” case (green circles in Figures 14a and 14b). The key difference between these

two cases is that Metron executes a heavy packet processing NF (i.e., DPI), while OpenBox executes

simple forwarding.

Key Outcome
We showed how network operators can in practice integrate Metron-based service chains with

proprietary pieces of code executed by blackboxes, either as native processes or as VMs. With this

important extension presented in §3, Metron can be used by production systems to dynamically

and transparently manage & load balance custom software stacks at high performance, while still

eliminating inter-core communication (outside of the blackboxes’ scope). If a network operator

desires even lower virtualization overhead at the same hardware-level performance, then container-

based blackboxes should replace blackbox VMs, while using the same SR-IOV dispatching.

5.5 Metron’s Dynamic Scaling at 100 Gbps
Using a similar Router�NAPT�LB service chain to the service chain used in §5.3.2, we evaluate

Metron’s dynamic scaling introduced in §4. In this experiment we inject the same campus trace, but

used deeper analysis of this trace to derive a larger number of routes (i.e., 5462 rules vs. 3597 rules

used in §5.3.2) for the router of the target service chain. We deployed this service chain on a single

SkyLake server equipped with a Mellanox ConnectX-5 NIC, to which the campus trace was injected

at an accelerated speed. We manually tuned the acceleration of the trace according to 3 different

functions: (i) a constant load function at the speed of the hardware, i.e., 100 Gbps (Figure 16a), (ii) a
square load function with increasing frequency and decreasing amplitude (Figure 16b), and (iii) a
sinusoidal load function with increasing frequency and decreasing amplitude (Figure 16c).

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:29

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
o

f A
llo

cated
 C

P
U

 C
o

res

Static Metron Throughput
Dynamic Metron Throughput

OpenBox RSS Throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
o

f A
llo

cated
 C

P
U

 C
o

res

Static Metron CPU Allocation
Dynamic Metron CPU Allocation

OpenBox RSS CPU Allocation

(a) Constant load at the speed of a 100GbE NIC.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
o

f A
llo

cated
 C

P
U

 C
o

res

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
o

f A
llo

cated
 C

P
U

 C
o

res

(b) Square load change with increasing frequency and decreasing amplitude.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45
 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
o

f A
llo

cated
 C

P
U

 C
o

res

Time (seconds)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45
 0

 2

 4

 6

 8

 10

 12

 14

 16

T
h

ro
u

g
h

p
u

t
(G

b
p

s)
o

f A
llo

cated
 C

P
U

 C
o

res

Time (seconds)

(c) Sinusoidal load change with increasing frequency and decreasing amplitude.

Fig. 16. Dynamic and static Metron vs. the RSS-based OpenBox under different types of dynamic workloads.
Static Metron and OpenBox exhibit a static CPU core allocation of 8 cores. Dynamic Metron always begins
with 1 core and allocates resources on demand. The borders of the areas filled with colors are defined by the
10th and 90th percentiles of the throughput across 10 runs.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:30 G.P. Katsikas et al.

The server under test runs the example service chain using three different systems. First, an

RSS-based implementation of the service chain using OpenBox with 8 cores (depicted with green

dashed-dotted lines showing throughput and circles showing the number of allocated CPU cores

in Figure 16). Second, Metron with 8, statically allocated, CPU cores (depicted with black dashed

and double dotted lines and crosses in Figure 16). Third, Metron with its dynamic CPU allocation

scheme enabled (depicted with red dashed lines and squares in Figure 16). The throughput curves

in Figure 16 are drawn using the median of the achieved throughput computed over 10 runs. To

highlight the variance around the medians of the throughput, we fill the areas between the medians

and the 10
th
and 90

th
percentiles accordingly. For better visibility, the CPU core allocation on the

right hand vertical axis in Figure 16 shows the number of CPU cores allocated by each system over

the course of a single execution of the experiment.

First we observe that in all cases the performance of the RSS-based OpenBox is far from the

performance limit of the underlying hardware, despite using 8 CPU cores. In contrast, with the

same CPU core allocation, Figure 16a shows that the static Metron is able to operate at the speed of

the hardware, achieving up to 99-100Gbps. This is confirmed by the “Hardware Limit RSS” curve

(i.e., black crosses) in Figure 11b, measured on the same server with the same input trace.

The greatest advantage of Metron is its ability to adapt to changing workloads. This is shown by

the performance of the dynamic Metron highlighted by the red lines and squares in Figure 16. In

most cases, dynamic Metron accurately tracks the performance of its static counterpart (i.e., black

lines and plus signs in Figure 16), while using only a fraction of the CPU cores used by static Metron.

Specifically, in Figures 16a and 16b dynamic Metron deliberately begins with 1 CPU core and scales

up to the throughput level of static Metron (i.e., 80-100Gbps) within less than 5 seconds. After

this point in time, dynamic and static Metron achieve similar performance despite any subsequent

workload changes. Finally, in Figure 16c, the offered throughput increases less drastically towards

the line-rate (i.e., between 0 and 13 seconds), which allows the dynamic Metron to completely

match the performance of static Metron.

As summarized in Table 2, in all of these experiments dynamic Metron provisions resources on

demand, thus achieving up to 5x higher throughput than OpenBox, while using 27.8-44.3% less

CPU resources than OpenBox.

Table 2. Performance and CPU utilization gains of Metron vs. OpenBox during dynamic scaling.

Experiment Metron improvement over OpenBox (%)

Throughput Average CPU Utilization
Constant load (Figure 16a)

up to 500

27.8

Square load change (Figure 16b) 44.3

Sinusoidal load change (Figure 16c) 37.9

A current limitation of Metron is that it cannot load balance at a finer granularity than the traffic

classes defined by SNF. This might be a problem when the derived traffic classes aggregate large

subnets, which might potentially result in thousands (or even millions) of (concurrent) flows ending

up at the same CPU core. In recent work (specifically RSS++ [6]), we look at ways to automatically

derive sub-traffic classes of a given traffic class (i.e., by tweaking a NIC’s RSS indireciton table) to

perform load balancing even in the presence of a few (large) traffic classes.

5.6 Deployment Micro-benchmarks
We benchmarked how quickly Metron carries out important control and data plane tasks, such as

hardware and software configuration, in a fully automated fashion.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:31

5.6.1 Impact of Increasing the number of Traffic Classes To study the impact of increasingly complex

service chains on Metron’s deployment latency, we use a firewall with an increasing number of

rules (up to 4000), derived from actual Internet Service Provider (ISP) firewalls [102]. We measure

the time between when a request to deploy this NF is issued by an application and the actual NF is

deployed either in hardware or in software.

In either case, the first task of Metron is to construct and synthesize the packet processing

graph of the service chain (as per §2.3.1), as depicted in the first of each group of bars (in black) in

Figures 17a and 17b. This latency is the dominant latency in both hardware and software-based

deployments (see the last set of bars in each figure). Fortunately, this is a one time overhead for each

unique service chain. Moreover, given the importance of generating such an optimized processing

graph, Metron precomputes and stores the synthesized graph for a given input in its distributed

database.

Apart from this fixed latency operation, a purely hardware-based deployment, requires two

additional operations, as shown in Figure 17a. The first operation is the automatic translation of the

firewall’s synthesized packet processing graph into hardware instructions targeting our OpenFlow

switch (the second bar in each set of bars). This operation involves building a classification tree

that encodes all the conditions of the firewall rules, therefore it has logarithmic complexity with

the number of traffic classes. For example, under the specified experimental conditions, the median

time to encode a large firewall with 4000 traffic classes is around 500ms. The last operation in the

hardware-based deployment is the rule installation in the OpenFlow switch (the third bar in each

set of bars in Figure 17a). Note that even entry-level OpenFlow switches, such as the one used,

can install thousands of rules per second; a more thorough study is provided in §5.6.2, where we

discuss the effects of networking hardware diversity on Metron.

For a purely software-based deployment of this same service chain, we consider the time following

graph construction and synthesis until the service chain is deployed at a designated server. This

latency is labeled “Server Configuration” in Figure 17b. Note that this takes longer per rule than

for the corresponding hardware-based case for a small number of traffic classes because there

is a fixed overhead to start a secondary DPDK process (i.e., a Metron slave) at the server. This

overhead is ∼180ms as can be seen from the case of 5 traffic classes. However, the deployment

time is 0.471ms/rule (versus 0.459ms/rule for the hardware case shown in Table 3), hence a large

firewall deployment takes a comparable amount of time either in software or hardware.

Overall, apart from the one-time precomputation overhead for constructing and synthesizing a

service chain, the worst case deployment time of a firewall with 4000 traffic classes is less than

1200ms, whereas only 100-200ms is required for hundreds of traffic classes.

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

La
te

nc
y

(m
s)

Number of Traffic Classes

Graph Construction + Synthesis
Rule Translation

 Rule Installation - NoviFlow 1132
Total Hardware Deployment

(a) Hardware-based deployment on a NoviFlow 1132
switch.

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

La
te

nc
y

(m
s)

Number of Traffic Classes

Graph Construction + Synthesis
Server Configuration

Total Software Deployment

(b) Software-based deployment on a 16-core Intel
Xeon E5-2667 v3.

Fig. 17. Latency (ms), on a logarithmic scale, for different Metron deployments with increasing complexity.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:32 G.P. Katsikas et al.

5.6.2 Diversity of Networking Hardware Networking hardware from different vendors and of

different price levels might offer various possibilities for NFV offloading. In this section the hardware-

based deployment shown in Figure 17a is repeated, but with the NoviFlow 1132 switch [81] replaced

with (i) a 100GbE Mellanox ConnectX-4 NIC [70], (ii) a 100GbE Mellanox ConnectX-5 NIC [73],

(iii) a 200GbE Mellanox ConnectX-6 NIC [74], (iv) a 100GbE Mellanox Bluefield NIC [72], (v) a
10GbE Intel 82599 ES NIC [38], (vi) the software-based OVS [88], or (vii) a hybrid HP 5130 El

hardware switch [34]. Figure 18 shows Metron’s rule installation latency on these eight devices

with increasing number of Internet Protocol version 4 (IPv4)-based L3/L4 rules. Table 3 summarizes

the results of Figure 18 along with key characteristics of these devices, as they affect Metron’s

deployment choices and performance.

 0.1

 1

 10

 100

 1000

 10000

5 10 100 500 1000 2000 3000 4000

R
u

le
 In

st
al

la
ti

o
n

 L
at

en
cy

 (
m

s)

Number of Rules

 100 GbE Mellanox ConnectX-4 NIC
 100 GbE Mellanox ConnectX-5 NIC
 200 GbE Mellanox ConnectX-6 NIC

 100 GbE Mellanox Bluefield NIC

 10 GbE Intel 82599 ES NIC
 OVS Software Switch

 NoviFlow 1132 Hardware Switch
 HP 5130 El Hardware Switch

Fig. 18. Rule installation latency (in ms), on a logarithmic scale, of five DPDK-based NICs (a 100GbE
Mellanox ConnectX-4 [70], a 100GbE Mellanox ConnectX-5 [73], a 200GbE Mellanox ConnectX-6 [74], a 100
GbE Mellanox Bluefield [72], and a 10GbE Intel 82599 ES [38]), as well as a software-based OpenFlow switch
(OVS [88] v.2.5.2) and two hardware-based OpenFlow switches (a NoviFlow 1132 [81] and an HP 5130 El [34]).
The default table (i.e., table 0) is used to store the input rules on all of these devices. The Intel 82599 ES NIC
and the HP 5130 El switch can accommodate up to 128 and 512 IPv4-based L3/L4 rules respectively.

Table 3. Comparison of 5 NICs and 3 switches used by Metron as offloading devices. The median and
average rule installation latencies per rule (i.e., rule installation speeds) are computed using the median values
from the bars shown in Figure 18.

Device Speed (ms/rule) Capacity
(Number of Rules)Model Type Median Average

10GbE Intel 82599 ES [38] HW 0.119 0.119 128

100GbE Mellanox ConnectX-4 [70] HW 0.443 1.505 65536

100GbE Mellanox ConnectX-5 [73] HW 0.364 0.975 Memory-bounded

200GbE Mellanox ConnectX-6 [74] HW 0.247 0.664 Memory-bounded

100GbE Mellanox Bluefield [72] HW 0.335 0.995 Memory-bounded

OVS v2.5.2 [88] SW 0.286 0.343 Memory-bounded

NoviFlow 1132 [81] HW 0.203 0.459 225280

HP 5130 El [34] HW 9.93 11.33 256/512/16384

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:33

Switches: The NoviFlow switch contains 55 OpenFlow tables, each with 4096 entries (i.e., 225280

rules in total), while the HP switch has a single OpenFlow table with either 512/256 entries for

IPv4/Internet Protocol version 6 (IPv6)-based rules or 16384 entries for L2 rules. The capacity of

OVS depends on the amount of memory that the host machine provides; modern servers provide

ample DRAM capacity to store millions of rules.

The average rule installation speed of the NoviFlow 1132 switch is substantially higher than the

HP 5130 El (0.459 vs. 11.33 ms/rule), with the difference being more than an order of magnitude.

Moreover, this difference is reflected in the price difference between the two switches (approximately

US$15 000 vs.US$2000). In contrast, OVS is open source software and has lower data plane

performance, but outperforms both hardware-based switches in terms of average rule installation

speed (0.343ms/rule), when running on the processor described for the testbed in §5.2. This finding

is confirmed by earlier studies [61, 62], where the rule installation speed varied, especially when

priorities were involved. However, in this experiment Metron installed rules of the same priority

and low variance was observed. OVS achieves the fastest average rule installation speed out of all

the switches tested with 0.343ms/rule (i.e., 28.9% faster than the Noviflow 1132).

NICs: According to Intel’s documentation [37], the Intel 82599 ES NIC can only accommodate up

to 128 IPv4-based L3/L4 rules. We verified this observation by conducting our own benchmarks

using DPDK 19.11 and DPDK’s flow API [104]. As the capacity of the Mellanox (i.e., ConnectX-4,

ConnectX-5, ConnectX-6, and Bluefield) NICs is not disclosed by Mellanox, we performed additional

benchmarks with DPDK 19.11 and Mellanox OFED 4.7.1 firmware version, in order to infer the

capacity of these NICs by installing an increasing number of rules. The outcome of this experiment

revealed that all four Mellanox NICs could accommodate up to 65536 IPv4-based L3/L4 rules into

table 0; this capacity is substantially greater than Intel’s 82599 ES. While the Mellanox ConnectX-4

NIC uses a single flow table, the ConnectX-5, ConnectX-6, and Bluefield NICs allow creation of

multiple subsequent flow tables (i.e., groups), each with a much larger capacity than table 0. To

extend the pipeline of these NICs with a new table, one stores a rule that matches the desired traffic

and then associates this match operation with a ‘jump group X‘ action, where X is the number of

the table to jump into [105]. We progressively increased the number of installed flow rules into

table 1 (of each NIC) up to 6 million, without exhausting the NIC’s capacity; hence, we conjecture

that these NICs use in-NIC storage for additional flow tables. In addition to the large flow rule

capacity of these NICs, all tables beyond table 0 have higher rule installation speeds. According to

a recent study, the rule installation performance of the Mellanox NICs in table 1 can reach rates

beyond half a million of rules per second using a single CPU core to inject NIC rules [47]. This

performance can be further improved using multiple cores for rule injection [106].

As some of the NICs under test possess a single flow table, in the rest of this section, we compare

these NICs solely based upon the data shown in Table 3, which reports the rule installation speeds

using the default table 0 and solely IPv4-based L3/L4 rules. In this case, the Intel 82599 ES NIC

outperforms all the other devices with its average rule installation speed of 0.119ms/rule. Despite

its limited capacity, this NIC’s rule installation speed is almost 4 times faster on average than the

NoviFlow 1132 switch, while being several orders of magnitude lower in cost (and port density).

The Mellanox ConnectX-5 and Bluefield NICs have similar rule installation speeds (the latter uses

a ConnectX-5 network adapter [72]), which is half of the average rule installation speed achieved

by the NoviFlow 1132 switch (i.e., 0.975 vs. 0.459ms/rule). The older generation ConnectX-4 is on

average 40% slower (in terms of rule installation speed) than its two successors (ConnectX-5 and

Bluefield) and almost 2.3x times slower than the latest ConnectX-6 NIC.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:34 G.P. Katsikas et al.

5.7 Metron’s Placement in Large Networks
In this section we test Metron’s placement scheme, presented in §2.3.3, on a set of topologies with

a large number of nodes, on which we deploy hundreds to thousands of service chains.

To verify that the performance of our placement scheme can be generalized to real and potentially

large networks, we conducted experiments that emulate Metron’s service chain placement in

datacenters, using fat-tree topologies of increasing sizes (see Figure 19). Our analytic study shows

how close Metron’s placement decisions are compared to uniform placement and what bandwidth

requirements each approach demands for a large number of service chains. Note that the uniform

placement allocates equal number of CPUs from the available servers, while a nearly uniform

placement exhibits the least distance from the uniform. Note also that our approach is not restricted

to datacenter topologies; Metron’s placement scheme is topology-agnostic.

Figure 19a compares Metron’s placement with the uniform placement policies with increasing

number of servers (i.e., 16, 128, and 1024) and service chains (i.e., 200, 1000, and 10000). The first of

each set of bars indicate that Metron’s placement decisions matches the uniform ones with ∼40%
median probability, regardless of the network’s size and number of service chains to be placed.

For 16 servers, the upper percentile indicates that Metron makes a uniform decision with 70%

probability. According to the other two sets of bars, most of the remaining decisions made by

Metron fall very close to uniform (i.e., middle set of bars), confirming that our placement policy

makes reasonably balanced decisions, despite its “limited” randomness.

Figure 19b shows the bandwidth savings of our placement policy, compared to the uniform one.

To make a uniform placement decision, a controller has to query the CPU availability from all

the available servers; thus, incurring a communication overhead proportional to the network size

(which quickly becomes infeasible for large networks). This overhead is shown by the second of

each set of bars in Figure 19b. To reduce this overhead, we trade-off some accuracy in placement

to minimize Metron’s bandwidth requirements. The first of each set of bars in Figure 19b shows

that Metron requires orders of magnitude less bandwidth than the uniform policy to place a large

number of service chains on these networks. An indirect (but important) benefit of our low overhead

placement is that, by querying only 2 servers at a time, we generate a minimal number of events at

the servers, hence preserving processing cycles for other tasks.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Fat-tree k=4
16 Servers
200 Chains

Fat-tree k=8
128 Servers
1000 Chains

Fat-tree k=16
1024 Servers
10000 Chains

%
 r

el
at

iv
e

to
 U

ni
fo

rm
 P

la
ce

m
en

t

Uniform Metron Placements
Nearly-Uniform Metron Placements

Remaining Metron Placements

(a) Metron’s placement relative to the uniform
placement policy. Metron makes uniform or nearly
uniform (with the least distance from uniform)
placement decisions with ∼90% median probability.

100

102

104

106

108

Fat-tree k=4
16 Servers
200 Chains

Fat-tree k=8
128 Servers
1000 Chains

Fat-tree k=16
1024 Servers
10000 ChainsB

an
dw

id
th

 R
eq

ui
re

m
en

ts
 (M

es
sa

ge
s) Metron Placement

Uniform Placement

(b) Bandwidth requirements in terms of number of
messages exchanged between the controller and the
servers, on a logarithmic scale.

Fig. 19. Placement performance and bandwidth requirements on three fat-tree topologies of increasing
number of servers (i.e., 16, 128, and 1024), when using (i)Metron or (ii) the uniform (equal number of CPU
cores per server) placement scheme to deploy a large number of service chains.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:35

6 Related Work
Here, we discuss related works that were not mentioned earlier in this article.

6.1 NFV Management
E2 [90] and Metron [48] both manage service chains mapped to clusters of servers interconnected

via programmable switches. However, E2 only partially exploits OpenFlow switches to perform

traffic steering. In contrast, Metron fully exploits the network (both OpenFlow switches and NICs)

to both steer traffic and to offload and load balance NFV service chains, while deliberately avoiding

E2’s inter-core transfers.

Inspired by the SDN networking paradigm, OpenBox [16] decouples the control plane of NFs

from the data plane using the OpenBox protocol. However, the OpenBox protocol lacks important

abstractions with regard to managing NIC resources of commodity servers. In contrast, the Metron

protocol, introduced in Appendix A, extends the OpenBox protocol in this important direction.

The Metron controller monitors NIC resources and performs service chain offloading (i.e., by

installing/deleting NIC rules) using the Metron protocol. A technical description of the Metron

protocol is available at [45].

6.2 NFV Consolidation
OpenBox [16] merges similar packet processing elements into one, thus reducing redundancy.

Slick [3] and CoMb [98] propose NF consolidation schemes, although these schemes reside higher in

the network stack. mOS [39] introduces stateful flow processing in middlebox applications through a

reusable networking stack. Microboxes [65] propose a customizable Transmission Control Protocol

(TCP) stack for various types of middleboxes ranging from lightweight TCP state monitoring to

proxies with full TCP termination. MiddleClick [7] is a set of low-level solutions for building NFV

service chains with unified abstractions for TCP session management and flow classification. This

is done by introducing a per-session per-NF “scratchpad”, which acts as dedicated memory to

store and quickly lookup NF state information [4]. Similar to MiddleClick, SNF [49] eliminates

processing redundancy by synthesizing multiple NFs as an optimized equivalent NF. A more

detailed performance evaluation of SNF is provided in [44].

We integrated SNF into Metron, as it is the most extensive consolidation scheme to date. Metron

effectively coordinates these optimized pipelines on a large-scale, while attempting to fully exploit

the underlying hardware. MiddleClick could be integrated into Metron in the future, bringing

additional capabilities, such as unified TCP flow state management.

6.3 Hardware Programmability
During the last decade, there has been a major effort to increase hardware programmability.

OpenFlow [67] paved the way by enriching the programmability of switches using simple match-

action rules. Increasingly, NICs are equipped with hardware features, such as RSS and Flow Director,

for dispatching packets directly from the NIC to a specific CPU core.

In an attempt to overcome the static nature of the above solutions, more flexible programmability

models have emerged. Reconfigurable Match Tables (RMT) [15] and its successor P4 [14] are

prime examples of protocol-independent packet processors, while OpenState [10] and Open Packet

Processor (OPP) [11] showed how OpenFlow can become stateful with minimal but essential

modifications. FlexNIC [52] proposed a model for additional programmability in future NICs.

All these works further expose the hardware’s configuration knobs. Metron acts as an umbrella

to foster the integration of this diverse set of programmable devices into a common management

plane. In fact, our prototype integrates OpenFlow switches, DPDK-compatible NICs, and servers.

Thanks to ONOS’s abstractions, additional network drivers can be easily integrated.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:36 G.P. Katsikas et al.

6.4 Hardware Offloading
The rapid increase of link speeds has increased the complexity and processing requirements

of software-based network stacks and functions, despite the cloud providers’ efforts to built

increasingly well-tuned and efficient host SDN packet processing solutions [27]. Consequently,

cloud providers are striving for ways to offload network services to programmable hardware, thus

dedicating CPU resources to application-layer processing. In the rest of this section, we first present

today’s hardware offloading developments and then discuss how Metron expands to account for

these developments.

CommodityNICs andGraphics ProcessingUnits (GPUs): For increased performance, Raumer

et al. [93] offloaded the cryptographic function of a Virtual Private Network (VPN) gateway to

commodity NICs. HyperLoop [54] leverages Remote Direct Memory Access (RDMA) to remove

the CPU from the critical path of replicated transactions in storage systems. PacketShader [32],

Kargus [40], NBA [56], and APUNet [30] take advantage of inexpensive but powerful GPUs to

offload and accelerate packet processing. We envision these works to be future components of

Metron, thus extending its offloading abilities.

Recently, RSS++ [6] exploited available commodity NICs’ functionality to achieve stateful intra-

server load balancing with minimal overhead. Metron dispatches traffic through explicit (NIC

and/or OpenFlow) rules, while RSS++ steers flows to cores by modifying a NIC’s RSS indirection

table. When no hardware offloading can be exploited, Metron can readily leverage RSS++.

Smart NICs: Certain types of packet processing functions are not supported by commodity

NICs, therefore networking hardware vendors offer NICs with advanced processing capabilities,

also called Smart NICs [77–79]. Examples of Smart NICs’ advanced features are: (i) OVS offload

and acceleration [77, 94], (ii) cryptography for various cipher suites and key sizes, (iii) DPI [78],
(iv) stateful load balancing, and (v) virtual evolved packet core functions. For example, AccelNet [27]

is Microsoft Azure’s custom Smart NIC solution for offloading host networking to hardware, using

Field-Programmable Gate Arrays (FPGAs). ClickNP [63] showed how to achieve high performance

packet processing by completely migrating NFV into reconfigurable, but specialized hardware.

Programmable switches: SwitchKV [64] offloads key-value stores into OpenFlow switches. As

traditional Application-Specific Integrated Circuits (ASICs) or OpenFlow-based hardware cannot

maintain per-connection state, SilkRoad [75] exploits programmable switch ASICs to provide

high performance layer-4 load balancing. SilkRoad builds upon earlier load balancing efforts [51].

Dejavu [111] argues about offloading entire service chains to programmable networking hardware,

i.e., a Tofino-based P4 switch ASIC. With Dejavu, edge cloud providers could dedicate their (limited)

CPU resources to other types of applications, while using programmable ASICs to accommodate

their packet processing requirements.

Our strategy for future developments: Metron provides full support for OpenFlow switches

and all sorts of NICs that support DPDK. Such NICs span across commodity devices (e.g., 10GbE

Intel 82599 [38]), Smart NICs (e.g., Mellanox Bluefield [72] or Bluefield-2 [71], and Netronome Agilo

series [78–80]), while also supporting DPDK-based FPGAs as provided by e.g., Netcope [77]. P4

support is the next target of our prototype. We aim to achieve P4 compatibility through ONOS’s P4

primitives [86] and the Stratum project [87].

6.5 Server-level Solutions
Flurries [114] builds atop OpenNetVM [115] to provide software-based service chains on a per-flow

basis, while ClickOS [66] and NetVM [35] offer NFs running in VMs. NFP [100] extends OpenNetVM

to allow NFs in a service chain to be executed in parallel. Dysco [113] proposes a distributed protocol

for steering traffic across the NFs of a service chain. NFVnice [60] and SCC [42, 50] are efficient

NFV schedulers, optimized for high throughput and low latency respectively. Click-based [58]

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:37

approaches have proposed techniques to exploit multi-core architectures [8, 55, 101]. However,

none of these earlier approaches have explored the possibility of using hardware to offload parts of

a service chain nor do they support our optimized flow affinity mechanism.

6.6 Industrial Efforts
European Telecommunications Standards Institute (ETSI) has been driving NFV standardization over

the last few years [25]. ETSI’s specialized group [26] uses OpenStack [89] as an open implementation

of the current NFV standards, based on a generic framework for managing compute, storage,

and network resources. Central Office Re-architected as a Datacenter (CORD) [84] and Open

Platform for NFV (OPNFV) [108] are deployed on top of OpenStack and/or Kubernetes [107]. CORD

leverages SDN and NFV to build agile datacenters for the network edge, while OPNFV facilitates

the interoperability of NFV components across various open source ecosystems. Metron and CORD

share common controller abstractions (i.e., ONOS); however, we avoid virtualization by integrating

native DPDK-based solutions. Unlike CORD, Metron employs placement techniques (§2.3.3) with

minimal overhead (§5.6) and sophisticated NF consolidation (§2.3.1) to achieve high performance.

7 Conclusion
We have presented Metron, an NFV platform that fundamentally changes how service chains are

realized.Metron eliminates the need for costly inter-core communication at the servers by delegating

packet processing and CPU core dispatching operations to commodity programmable hardware

devices. Doing so offers dramatic hardware efficiency and performance increases over the state of the

art. Metron solves an important problem of the networking industry by transparently integrating,

managing, and load balancing blackbox NF implementations, while providing dynamic on demand

resource allocation under highly-variable workload volumes at 100Gbps.With commodity hardware

assistance, Metron fully exploits the processing capacity of a single server, to deeply inspect traffic

at 40Gbps and execute stateful service chains at the speed of 100GbE NICs.

We envision Metron to be a key component of the emerging 100GbE deployments, therefore we

encourage the networking industry and academic community to use and contribute to our open

source prototype.

8 Acknowledgments
We thank the anonymous referees, the associate editor, and the editor-in-chief Michael Swift, for

their insightful comments on earlier drafts of this manuscript. This work has received funding

from the European Research Council (ERC) under the European Union’s Horizon 2020 research and

innovation programme (grant agreement No. 770889). This work was also funded by the Swedish

Foundation for Strategic Research (SSF).

References

[1] Al-Fares, M., Loukissas, A., and Vahdat, A. A Scalable, Commodity Data Center Network Architecture. In

Proceedings of the ACM SIGCOMM 2008 Conference on Data Communication (New York, NY, USA, 2008), SIGCOMM

’08, ACM, pp. 63–74. http://doi.acm.org/10.1145/1402958.1402967.

[2] Al-Fares, M., Radhakrishnan, S., Raghavan, B., Huang, N., and Vahdat, A. Hedera: Dynamic Flow Scheduling for

Data Center Networks. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation
(Berkeley, CA, USA, 2010), NSDI’10, USENIX Association, pp. 19–19. https://static.usenix.org/events/nsdi10/tech/full_

papers/al-fares.pdf.

[3] Anwer, B., Benson, T., Feamster, N., and Levin, D. Programming Slick Network Functions. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research (New York, NY, USA, 2015), SOSR ’15, ACM,

pp. 14:1–14:13. http://doi.acm.org/10.1145/2774993.2774998.

[4] Barbette, T. Architecture for programmable network infrastructure. Doctoral thesis, University of Liege, Faculty of

Applied Sciences, Department of Electricity, Electronics and Informatics, Liege, Belgium, July 2018. http://hdl.handle.

net/2268/226257.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

http://doi.acm.org/10.1145/1402958.1402967
https://static.usenix.org/events/nsdi10/tech/full_papers/al-fares.pdf
https://static.usenix.org/events/nsdi10/tech/full_papers/al-fares.pdf
http://doi.acm.org/10.1145/2774993.2774998
http://hdl.handle.net/2268/226257
http://hdl.handle.net/2268/226257

1:38 G.P. Katsikas et al.

[5] Barbette, T., and Katsikas, G. P. Metron data plane, 2018. https://github.com/tbarbette/fastclick/tree/metron.

[6] Barbette, T., Katsikas, G. P., Maguire, Jr., G. Q., and Kostić, D. RSS++: load and state-aware receive side scaling.

In Proceedings of the 15th International Conference on Emerging Networking Experiments And Technologies (New York,

NY, USA, 2019), CoNEXT ’19, ACM, pp. 318–333. http://doi.acm.org/10.1145/3359989.3365412.

[7] Barbette, T., Soldani, C., Gaillard, R., and Mathy, L. Building a chain of high-speed VNFs in no time. In

Proceedings of the IEEE International Conference on High Performance Switching and Routing (2018), HPSR’18. https:

//www.tombarbette.be/wp-content/uploads/2018/10/barbette.pdf.

[8] Barbette, T., Soldani, C., and Mathy, L. Fast Userspace Packet Processing. In Proceedings of the 11th ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (Washington, DC, USA, 2015), ANCS ’15,

IEEE Computer Society, pp. 5–16. https://doi.org/10.1109/ANCS.2015.7110116.

[9] Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B., O’Connor, B., Radoslavov, P.,

Snow, W., and Parulkar, G. ONOS: Towards an Open, Distributed SDN OS. In Proceedings of the 3rd Workshop on
Hot Topics in Software Defined Networking (New York, NY, USA, 2014), HotSDN ’14, ACM, pp. 1–6. http://doi.acm.org/

10.1145/2620728.2620744.

[10] Bianchi, G., Bonola, M., Capone, A., and Cascone, C. OpenState: Programming Platform-independent Stateful

Openflow Applications Inside the Switch. SIGCOMM Comput. Commun. Rev. 44, 2 (Apr. 2014), 44–51. http://doi.acm.

org/10.1145/2602204.2602211.

[11] Bianchi, G., Bonola, M., Pontarelli, S., Sanvito, D., Capone, A., and Cascone, C. Open Packet Processor: a

programmable architecture for wire speed platform-independent stateful in-network processing. arXiv preprint
arXiv:1605.01977 (2016). https://arxiv.org/abs/1605.01977.

[12] Bjorklund, M. YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF). Internet

Request for Comments (RFC) 6020 (Proposed Standard), Oct. 2010. https://www.rfc-editor.org/rfc/rfc6020.txt.

[13] Boon Ang et al. Single Root I/O Virtualization and Sharing Specification Revision 1.1, Jan. 2010. https://composter.

com.ua/documents/sr-iov1_1_20Jan10_cb.pdf.

[14] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D., Vahdat,

A., Varghese, G., and Walker, D. P4: Programming Protocol-independent Packet Processors. SIGCOMM Comput.
Commun. Rev. 44, 3 (July 2014), 87–95. http://doi.acm.org/10.1145/2656877.2656890.

[15] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McKeown, N., Izzard,M., Mujica, F., andHorowitz, M. Forwarding

Metamorphosis: Fast Programmable Match-Action Processing in Hardware for SDN. SIGCOMM Comput. Commun.
Rev. 43, 4 (Aug. 2013), 99–110. https://doi.org/10.1145/2534169.2486011.

[16] Bremler-Barr, A., Harchol, Y., and Hay, D. OpenBox: A Software-Defined Framework for Developing, Deploying,

and Managing Network Functions. In Proceedings of the 2016 Conference on ACM SIGCOMM 2016 Conference (New
York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 511–524. http://doi.acm.org/10.1145/2934872.2934875.

[17] Case, J., Fedor, M., Schoffstall, M. L., and Davin, J. Simple Network Management Protocol (SNMP). Internet

Request for Comments (RFC) 1157, May 1990. http://www.ietf.org/rfc/rfc1157.txt.

[18] Chowdhury, M., Rahman, M. R., and Boutaba, R. ViNEYard: Virtual Network Embedding Algorithms with

Coordinated Node and Link Mapping. IEEE/ACM Trans. Netw. 20, 1 (Feb. 2012), 206–219. http://dx.doi.org/10.1109/
TNET.2011.2159308.

[19] Cisco. Migrate to a 40-Gbps Data Center with Cisco QSFP BiDi Technology, 2013. http://www.cisco.com/c/en/us/

products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html.

[20] Cisco. Cisco CSR 1000v and Cisco ISRv Software Configuration Guide, 2020. https://www.cisco.com/c/en/us/td/docs/

routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide/b_CSR1000v_Configuration_Guide_

chapter_010001.html.

[21] Dietz, T., Bifulco, R., Manco, F., Martins, J., Kolbe, H., and Huici, F. Enhancing the BRAS through virtualization.

In Proceedings of the 1st IEEE Conference on Network Softwarization, NetSoft 2015 (2015), pp. 1–5. https://doi.org/10.
1109/NETSOFT.2015.7116144.

[22] Dobrescu, M., Egi, N., Argyraki, K., Chun, B.-G., Fall, K., Iannaccone, G., Knies, A., Manesh, M., and Ratnasamy,

S. RouteBricks: Exploiting Parallelism to Scale Software Routers. In Proceedings of the ACM SIGOPS 22nd Symposium
on Operating Systems Principles (New York, NY, USA, 2009), SOSP ’09, ACM, pp. 15–28. http://doi.acm.org/10.1145/

1629575.1629578.

[23] Eckert, A., MartinGarcia, L., Niazmand, R., and Wang, X. Wedge 100: More open and versatile than ever, Oct.

2016. https://code.facebook.com/posts/1802489260027439/wedge-100-more-open-and-versatile-than-ever/.

[24] Enns, R., Bjorklund, M., Schoenwaelder, J., and Bierman, A. Network Configuration Protocol (NETCONF).

Internet Request for Comments (RFC) 6241 (Proposed Standard), June 2011. Updated by RFC 7803, https://www.rfc-

editor.org/rfc/rfc6241.txt.

[25] European Telecommunications Standards Institute. Network Functions Virtualisation, 2017. http://www.etsi.

org/technologies-clusters/technologies/689-network-functions-virtualisation.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

https://github.com/tbarbette/fastclick/tree/metron
http://doi.acm.org/10.1145/3359989.3365412
https://www.tombarbette.be/wp-content/uploads/2018/10/barbette.pdf
https://www.tombarbette.be/wp-content/uploads/2018/10/barbette.pdf
https://doi.org/10.1109/ANCS.2015.7110116
http://doi.acm.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2620728.2620744
http://doi.acm.org/10.1145/2602204.2602211
http://doi.acm.org/10.1145/2602204.2602211
https://arxiv.org/abs/1605.01977
https://www.rfc-editor.org/rfc/rfc6020.txt
https://composter.com.ua/documents/sr-iov1_1_20Jan10_cb.pdf
https://composter.com.ua/documents/sr-iov1_1_20Jan10_cb.pdf
http://doi.acm.org/10.1145/2656877.2656890
https://doi.org/10.1145/2534169.2486011
http://doi.acm.org/10.1145/2934872.2934875
http://www.ietf.org/rfc/rfc1157.txt
http://dx.doi.org/10.1109/TNET.2011.2159308
http://dx.doi.org/10.1109/TNET.2011.2159308
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
http://www.cisco.com/c/en/us/products/collateral/switches/nexus-9000-series-switches/white-paper-c11-729493.html
https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide/b_CSR1000v_Configuration_Guide_chapter_010001.html
https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide/b_CSR1000v_Configuration_Guide_chapter_010001.html
https://www.cisco.com/c/en/us/td/docs/routers/csr1000/software/configuration/b_CSR1000v_Configuration_Guide/b_CSR1000v_Configuration_Guide_chapter_010001.html
https://doi.org/10.1109/NETSOFT.2015.7116144
https://doi.org/10.1109/NETSOFT.2015.7116144
http://doi.acm.org/10.1145/1629575.1629578
http://doi.acm.org/10.1145/1629575.1629578
https://code.facebook.com/posts/1802489260027439/wedge-100-more-open-and-versatile-than-ever/
https://www.rfc-editor.org/rfc/rfc6241.txt
https://www.rfc-editor.org/rfc/rfc6241.txt
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation
http://www.etsi.org/technologies-clusters/technologies/689-network-functions-virtualisation

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:39

[26] European Telecommunications Standards Institute (ETSI). Open Source NFV Management and Orchestration

(MANO) , 2020. https://osm.etsi.org/.

[27] Firestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M., Angepat, H., Bhanu, V.,

Caulfield, A., Chung, E., Chandrappa, H. K., Chaturmohta, S., Humphrey, M., Lavier, J., Lam, N., Liu, F.,

Ovtcharov, K., Padhye, J., Popuri, G., Raindel, S., Sapre, T., Shaw, M., Silva, G., Sivakumar, M., Srivastava,

N., Verma, A., Zuhair, Q., Bansal, D., Burger, D., Vaid, K., Maltz, D. A., and Greenberg, A. Azure Accelerated

Networking: SmartNICs in the Public Cloud. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18) (Renton, WA, 2018), USENIX Association, pp. 51–66. https://www.usenix.org/system/files/

conference/nsdi18/nsdi18-firestone.pdf.

[28] Gember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S., and Akella, A. OpenNF:

Enabling Innovation in Network Function Control. In Proceedings of the 2014 ACM Conference on SIGCOMM (New

York, NY, USA, 2014), SIGCOMM ’14, ACM, pp. 163–174. http://doi.acm.org/10.1145/2619239.2626313.

[29] Gilad Shainer, Network Computing. 100 Gbps Headed For The Data Center, Nov. 2014. https://www.

networkcomputing.com/data-centers/100-gbps-headed-data-centers.

[30] Go, Y., Jamshed, M. A., Moon, Y., Hwang, C., and Park, K. APUNet: Revitalizing GPU as Packet Processing

Accelerator. In 14th USENIX Symposium on Networked Systems Design and Implementation (2017), NSDI’17, USENIX

Association, pp. 83–96. https://www.usenix.org/system/files/conference/nsdi17/nsdi17-go.pdf.

[31] Han, S., Jang, K., Panda, A., Palkar, S., Han, D., and Ratnasamy, S. SoftNIC: A Software NIC to Augment

Hardware. Tech. Rep. UCB/EECS-2015-155, EECS Department, University of California, Berkeley, May 2015. http:

//www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html.

[32] Han, S., Jang, K., Park, K., and Moon, S. PacketShader: A GPU-accelerated Software Router. In Proceedings of the
ACM SIGCOMM 2010 Conference (New York, NY, USA, 2010), SIGCOMM ’10, ACM, pp. 195–206. http://doi.acm.org/

10.1145/1851182.1851207.

[33] He, J., Zhang-Shen, R., Li, Y., Lee, C.-Y., Rexford, J., and Chiang, M. DaVinci: Dynamically Adaptive Virtual

Networks for a Customized Internet. In Proceedings of the 2008 ACM CoNEXT Conference (New York, NY, USA, 2008),

CoNEXT ’08, ACM, pp. 15:1–15:12. http://doi.acm.org/10.1145/1544012.1544027.

[34] Hewlett Packard. HPE FlexNetwork 5130 EI Switch Series, Jan. 2017. https://h20195.www2.hpe.com/v2/getpdf.

aspx/c04394228.pdf.

[35] Hwang, J., Ramakrishnan, K. K., and Wood, T. NetVM: High Performance and Flexible Networking Using

Virtualization on Commodity Platforms. In Proceedings of the 11th USENIX Conference on Networked Systems Design
and Implementation (Berkeley, CA, USA, 2014), NSDI’14, USENIX Association, pp. 445–458. https://www.usenix.org/

system/files/conference/nsdi14/nsdi14-paper-hwang.pdf.

[36] Intel. Improving Network Performance in Multi-Core Systems, 2007. http://www.intel.com/content/dam/support/

us/en/documents/network/sb/318483001us2.pdf.

[37] Intel. Introduction to Intel® Ethernet Flow Director and Memcached Performance, 2014. https://www.intel.com/

content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf.

[38] Intel. 82599 10 GbE Controller Datasheet, 2016. http://www.intel.com/content/www/us/en/embedded/products/

networking/82599-10-gbe-controller-datasheet.html.

[39] Jamshed, M., Moon, Y., Kim, D., Han, D., and Park, K. mOS: A Reusable Networking Stack for Flow Monitoring

Middleboxes. In Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation (Berkeley,
CA, USA, 2017), NSDI’17, pp. 113–129. https://www.usenix.org/system/files/conference/nsdi17/nsdi17-jamshed.pdf.

[40] Jamshed, M. A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., and Park, K. Kargus: A Highly-scalable Software-

based Intrusion Detection System. In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (2012), CCS ’12. http://doi.acm.org/10.1145/2382196.2382232.

[41] Kablan, M., Alsudais, A., Keller, E., and Le, F. Stateless Network Functions: Breaking the Tight Coupling of

State and Processing. In 14th USENIX Symposium on Networked Systems Design and Implementation (2017), NSDI’17,

pp. 97–112. https://www.usenix.org/system/files/conference/nsdi17/nsdi17-kablan.pdf.

[42] Katsikas, G. P. Realizing High Performance NFV Service Chains. Licentiate thesis, KTH Royal Institute of Technology,

School of Information and Communication Technology, Kista, Sweden, Nov. 2016. TRITA-ICT 2016:35, http://urn.kb.

se/resolve?urn=urn:nbn:se:kth:diva-195352.

[43] Katsikas, G. P. Metron controller’s southbound driver for managing commodity servers, 2018. https://github.com/

gkatsikas/onos/tree/metron-driver/drivers/server.

[44] Katsikas, G. P. NFV Service Chains at the Speed of the Underlying Commodity Hardware. Doctoral thesis, KTH

Royal Institute of Technology, School of Electrical Engineering and Computer Science, Kista, Sweden, Sept. 2018.

TRITA-EECS-AVL-2018:50,http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233629.

[45] Katsikas, G. P., and Barbette, T. ONOS Server Device Driver Tutorial, 2018. https://wiki.onosproject.org/display/

ONOS/Server+Device+Driver+Tutorial.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

https://osm.etsi.org/
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-firestone.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-firestone.pdf
http://doi.acm.org/10.1145/2619239.2626313
https://www.networkcomputing.com/data-centers/100-gbps-headed-data-centers
https://www.networkcomputing.com/data-centers/100-gbps-headed-data-centers
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-go.pdf
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-155.html
http://doi.acm.org/10.1145/1851182.1851207
http://doi.acm.org/10.1145/1851182.1851207
http://doi.acm.org/10.1145/1544012.1544027
https://h20195.www2.hpe.com/v2/getpdf.aspx/c04394228.pdf
https://h20195.www2.hpe.com/v2/getpdf.aspx/c04394228.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-hwang.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-hwang.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
http://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
http://www.intel.com/content/www/us/en/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-jamshed.pdf
http://doi.acm.org/10.1145/2382196.2382232
https://www.usenix.org/system/files/conference/nsdi17/nsdi17-kablan.pdf
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195352
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-195352
https://github.com/gkatsikas/onos/tree/metron-driver/drivers/server
https://github.com/gkatsikas/onos/tree/metron-driver/drivers/server
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233629
https://wiki.onosproject.org/display/ONOS/Server+Device+Driver+Tutorial
https://wiki.onosproject.org/display/ONOS/Server+Device+Driver+Tutorial

1:40 G.P. Katsikas et al.

[46] Katsikas, G. P., and Barbette, T. Metron control plane as an ONOS application, 2020. https://github.com/gkatsikas/

onos/tree/metron-ctrl/apps/metron.

[47] Katsikas, G. P., Barbette, T., Chiesa, M., Kostić, D., and Maguire Jr., G. Q. What You Need to Know About (Smart)

Network Interface Cards. In Passive and Active Measurement, O. Hohlfeld, A. Lutu, and D. Levin, Eds., PAM ’21. Springer

International Publishing, 2021, pp. 319–336. https://www.pam2021.b-tu.de/papers/10.1007978-3-030-72582-2_19.pdf.

[48] Katsikas, G. P., Barbette, T., Kostić, D., Steinert, R., and Maguire Jr., G. Q. Metron: NFV Service Chains at the

True Speed of the Underlying Hardware. In 15th USENIX Conference on Networked Systems Design and Implementation
(Renton, WA, 2018), NSDI’18, USENIX Association, pp. 171–186. https://www.usenix.org/system/files/conference/

nsdi18/nsdi18-katsikas.pdf.

[49] Katsikas, G. P., Enguehard, M., Kuźniar, M., Maguire Jr., G. Q., and Kostić, D. SNF: Synthesizing high performance

NFV service chains. PeerJ Computer Science 2 (Nov. 2016), e98. http://dx.doi.org/10.7717/peerj-cs.98.
[50] Katsikas, G. P., Maguire Jr., G. Q., and Kostić, D. Profiling and accelerating commodity NFV service chains with

SCC. Journal of Systems and Software 127C (Feb. 2017), 12–27. https://doi.org/10.1016/j.jss.2017.01.005.

[51] Katta, N., Hira, M., Kim, C., Sivaraman, A., and Rexford, J. HULA: Scalable Load Balancing Using Programmable

Data Planes. In Proceedings of the Symposium on SDN Research (New York, NY, USA, 2016), SOSR ’16, ACM, pp. 10:1–

10:12. http://doi.acm.org/10.1145/2890955.2890968.

[52] Kaufmann, A., Peter, S., Sharma, N. K., Anderson, T., and Krishnamurthy, A. High Performance Packet

Processing with FlexNIC. In Proceedings of the 21st International Conference on Architectural Support for Programming
Languages and Operating Systems (New York, NY, USA, 2016), ASPLOS ’16, ACM, pp. 67–81. http://doi.acm.org/10.

1145/2872362.2872367.

[53] Khalid, J., Gember-Jacobson, A., Michael, R., Abhashkumar, A., and Akella, A. Paving the Way for NFV:

Simplifying Middlebox Modifications Using StateAlyzr. In Proceedings of the 13th USENIX Conference on Networked
Systems Design and Implementation (2016), NSDI’16, USENIX Association, pp. 239–253. https://www.usenix.org/

system/files/conference/nsdi16/nsdi16-paper-khalid.pdf.

[54] Kim, D., Memaripour, A., Badam, A., Zhu, Y., Liu, H. H., Padhye, J., Raindel, S., Swanson, S., Sekar, V., and Seshan,

S. Hyperloop: Group-based NIC-offloading to Accelerate Replicated Transactions in Multi-tenant Storage Systems. In

Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication (New York, NY, USA,

2018), SIGCOMM ’18, ACM, pp. 297–312. http://doi.acm.org/10.1145/3230543.3230572.

[55] Kim, J., Huh, S., Jang, K., Park, K., and Moon, S. The Power of Batching in the Click Modular Router. In Proceedings
of the Asia-Pacific Workshop on Systems (New York, NY, USA, 2012), APSYS ’12, ACM, pp. 14:1–14:6. http://doi.acm.

org/10.1145/2349896.2349910.

[56] Kim, J., Jang, K., Lee, K., Ma, S., Shim, J., and Moon, S. NBA (Network Balancing Act): A High-performance Packet

Processing Framework for Heterogeneous Processors. In Proceedings of the 10th European Conference on Computer
Systems (New York, NY, USA, 2015), EuroSys ’15, ACM, pp. 22:1–22:14. http://doi.acm.org/10.1145/2741948.2741969.

[57] Kim, J. F. Mellanox Blog: 25 Is the New 10, 50 Is the new 40, 100 Is the New Amazing, Mar. 2016. http://www.mellanox.

com/blog/2016/03/25-is-the-new-10-50-is-the-new-40-100-is-the-new-amazing/.

[58] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The Click Modular Router. ACM Trans. Comput.
Syst. 18, 3 (Aug. 2000), 263–297. http://doi.acm.org/10.1145/354871.354874.

[59] Krishnan, R., Durrani, M., and Phaal, P. Real-time SDN and NFV Analytics for DDoS Mitigation, 2014. https:

//blog.sflow.com/2014/02/nfd7-real-time-sdn-and-nfv-analytics_1986.html.

[60] Kulkarni, S. G., Zhang, W., Hwang, J., Rajagopalan, S., Ramakrishnan, K. K., Wood, T., Arumaithurai, M., and

Fu, X. NFVnice: Dynamic Backpressure and Scheduling for NFV Service Chains. In Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 71–84.

http://doi.acm.org/10.1145/3098822.3098828.

[61] Kuźniar, M., Perešíni, P., and Kostić, D. What You Need to Know About SDN Flow Tables. In Passive and Active
Measurement (PAM) (2015), vol. 8995 of Lecture Notes in Computer Science, pp. 347–359. https://doi.org/10.1007/978-3-
319-15509-8_26.

[62] Kuźniar, M., Perešíni, P., Kostić, D., and Canini, M. Methodology, Measurement and Analysis of Flow Table

Update Characteristics in Hardware OpenFlow Switches. Computer Networks: The International Journal of Computer
and Telecommunications Networking, Elsevier, vol. 26 (2018). https://doi.org/10.1016/j.comnet.2018.02.014.

[63] Li, B., Tan, K., Luo, L. L., Peng, Y., Luo, R., Xu, N., Xiong, Y., Cheng, P., and Chen, E. ClickNP: Highly Flexible and

High Performance Network Processing with Reconfigurable Hardware. In Proceedings of the 2016 ACM SIGCOMM
Conference (2016), SIGCOMM ’16, ACM, pp. 1–14. http://doi.acm.org/10.1145/2934872.2934897.

[64] Li, X., Sethi, R., Kaminsky, M., Andersen, D. G., and Freedman, M. J. Be Fast, Cheap and in Control with SwitchKV.

In Proceedings of the 13th USENIX Conference on Networked Systems Design and Implementation (Berkeley, CA, USA,

2016), NSDI’16, USENIX Association, pp. 31–44. https://www.usenix.org/system/files/conference/nsdi16/nsdi16-

paper-li_xiaozhou-update.pdf.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

https://github.com/gkatsikas/onos/tree/metron-ctrl/apps/metron
https://github.com/gkatsikas/onos/tree/metron-ctrl/apps/metron
https://www.pam2021.b-tu.de/papers/10.1007978-3-030-72582-2_19.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-katsikas.pdf
http://dx.doi.org/10.7717/peerj-cs.98
https://doi.org/10.1016/j.jss.2017.01.005
http://doi.acm.org/10.1145/2890955.2890968
http://doi.acm.org/10.1145/2872362.2872367
http://doi.acm.org/10.1145/2872362.2872367
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-khalid.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-khalid.pdf
http://doi.acm.org/10.1145/3230543.3230572
http://doi.acm.org/10.1145/2349896.2349910
http://doi.acm.org/10.1145/2349896.2349910
http://doi.acm.org/10.1145/2741948.2741969
http://www.mellanox.com/blog/2016/03/25-is-the-new-10-50-is-the-new-40-100-is-the-new-amazing/
http://www.mellanox.com/blog/2016/03/25-is-the-new-10-50-is-the-new-40-100-is-the-new-amazing/
http://doi.acm.org/10.1145/354871.354874
https://blog.sflow.com/2014/02/nfd7-real-time-sdn-and-nfv-analytics_1986.html
https://blog.sflow.com/2014/02/nfd7-real-time-sdn-and-nfv-analytics_1986.html
http://doi.acm.org/10.1145/3098822.3098828
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1016/j.comnet.2018.02.014
http://doi.acm.org/10.1145/2934872.2934897
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-li_xiaozhou-update.pdf
https://www.usenix.org/system/files/conference/nsdi16/nsdi16-paper-li_xiaozhou-update.pdf

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:41

[65] Liu, G., Ren, Y., Yurchenko, M., Ramakrishnan, K. K., and Wood, T. Microboxes: High Performance NFV with

Customizable, Asynchronous TCP Stacks and Dynamic Subscriptions. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication (New York, NY, USA, 2018), SIGCOMM ’18, ACM, pp. 504–517.

http://doi.acm.org/10.1145/3230543.3230563.

[66] Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., and Huici, F. ClickOS and the Art of

Network Function Virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation (Berkeley, CA, USA, 2014), NSDI’14, USENIX Association, pp. 459–473. https://www.usenix.org/

system/files/conference/nsdi14/nsdi14-paper-martins.pdf.

[67] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker, S., and Turner,

J. OpenFlow: Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 69–74.

http://doi.acm.org/10.1145/1355734.1355746.

[68] Mellanox. Mellanox ASAP
2
: Accelerated Switching and Packet Processing, 2017. https://www.mellanox.com/related-

docs/products/SB_asap2.pdf.

[69] Mellanox. Mellanox NIC’s Performance Report with DPDK 17.05, 2017. Document number MLNX-15-52365,

Revision 1.0, 2017, https://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf.

[70] Mellanox. ConnectX®-4 EN Card 100Gb/s Ethernet Adapter Card, 2018. http://www.mellanox.com/related-

docs/prod_adapter_cards/PB_ConnectX-4_EN_Card.pdf.

[71] Mellanox. BlueField-2® SmartNIC for InfiniBand & Ethernet, 2019. https://www.mellanox.com/related-docs/prod_

adapter_cards/PB_BlueField-2_SmartNIC_VPI.pdf.

[72] Mellanox. BlueField® SmartNIC for Ethernet, 2019. https://www.mellanox.com/related-docs/prod_adapter_cards/

PB_BlueField_Smart_NIC.pdf.

[73] Mellanox. ConnectX®-5 EN Card 100Gb/s Ethernet Adapter Card, 2019. http://www.mellanox.com/related-

docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf.

[74] Mellanox. ConnectX®-6 EN IC 200GbE Ethernet Adapter IC, 2019. https://www.mellanox.com/related-docs/prod_

silicon/PB_ConnectX-6_EN_IC.pdf.

[75] Miao, R., Zeng, H., Kim, C., Lee, J., and Yu, M. SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap

Using Switching ASICs. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication
(New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 15–28. https://doi.org/10.1145/3098822.3098824.

[76] Mitzenmacher, M. The Power of Two Choices in Randomized Load Balancing. IEEE Trans. Parallel Distrib. Syst. 12,
10 (Oct. 2001), 1094–1104. http://dx.doi.org/10.1109/71.963420.

[77] Netcope Technologies. Netcope P4 Cloud: Online P4 to FPGA synthesis and in-hardware evaluation, 2020.

https://www.netcope.com/en/products/netcopep4.

[78] Netronome. Agilio LX 1x100GbE SmartNIC, 2018. https://www.netronome.com/m/documents/PB_Agilio_Lx_

1x100GbE-7-20.pdf.

[79] Netronome. Agilio CX SmartNICs, 2020. https://www.netronome.com/products/agilio-cx/.

[80] Netronome. Agilio FX SmartNICs, 2020. https://www.netronome.com/products/agilio-fx/.

[81] NoviFlow. NoviSwitch 1132 High Performance OpenFlow Switch, 2013. https://noviflow.com/wp-content/uploads/

NoviSwitch-1132-Datasheet-V2_1.pdf.

[82] Olteanu, V. A., and Raiciu, C. Efficiently Migrating Stateful Middleboxes. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (2012), SIGCOMM

’12, ACM, pp. 93–94. http://doi.acm.org/10.1145/2342356.2342376.

[83] Ongaro, D., and Ousterhout, J. In Search of an Understandable Consensus Algorithm. In Proceedings of the 2014
USENIX Conference on USENIX Annual Technical Conference (Berkeley, CA, USA, 2014), USENIX ATC’14, USENIX

Association, pp. 305–320. https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf.

[84] Open Networking Foundation (ONF). Central Office Re-architected as a Datacenter (CORD), 2020. https://www.

opennetworking.org/cord/.

[85] Open Networking Foundation (ONF). Open Network Operating System (ONOS), 2020. http://onosproject.org/.

[86] Open Networking Foundation (ONF). P4 brigade, 2020. https://wiki.onosproject.org/display/ONOS/P4+brigade.

[87] Open Networking Foundation (ONF). Stratum, 2020. https://www.opennetworking.org/stratum/.

[88] Open vSwitch. An Open Virtual Switch. http://openvswitch.org.

[89] OpenStack. Open Source Cloud Computing Software, 2020. https://www.openstack.org/.

[90] Palkar, S., Lan, C., Han, S., Jang, K., Panda, A., Ratnasamy, S., Rizzo, L., and Shenker, S. E2: A Framework for

NFV Applications. In Proceedings of the 25th Symposium on Operating Systems Principles (New York, NY, USA, 2015),

SOSP ’15, ACM, pp. 121–136. http://doi.acm.org/10.1145/2815400.2815423.

[91] Pesterev, A., Zeldovich, N., and Morris, R. T. Locating Cache Performance Bottlenecks Using Data Profiling.

In Proceedings of the 5th European Conference on Computer Systems (New York, NY, USA, 2010), EuroSys ’10, ACM,

pp. 335–348. http://doi.acm.org/10.1145/1755913.1755947.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

http://doi.acm.org/10.1145/3230543.3230563
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
https://www.usenix.org/system/files/conference/nsdi14/nsdi14-paper-martins.pdf
http://doi.acm.org/10.1145/1355734.1355746
https://www.mellanox.com/related-docs/products/SB_asap2.pdf
https://www.mellanox.com/related-docs/products/SB_asap2.pdf
https://fast.dpdk.org/doc/perf/DPDK_17_05_Mellanox_NIC_performance_report.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_EN_Card.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField-2_SmartNIC_VPI.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField-2_SmartNIC_VPI.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
https://www.mellanox.com/related-docs/prod_adapter_cards/PB_BlueField_Smart_NIC.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-5_EN_Card.pdf
https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://www.mellanox.com/related-docs/prod_silicon/PB_ConnectX-6_EN_IC.pdf
https://doi.org/10.1145/3098822.3098824
http://dx.doi.org/10.1109/71.963420
https://www.netcope.com/en/products/netcopep4
https://www.netronome.com/m/documents/PB_Agilio_Lx_1x100GbE-7-20.pdf
https://www.netronome.com/m/documents/PB_Agilio_Lx_1x100GbE-7-20.pdf
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-fx/
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
https://noviflow.com/wp-content/uploads/NoviSwitch-1132-Datasheet-V2_1.pdf
http://doi.acm.org/10.1145/2342356.2342376
https://www.usenix.org/system/files/conference/atc14/atc14-paper-ongaro.pdf
https://www.opennetworking.org/cord/
https://www.opennetworking.org/cord/
http://onosproject.org/
https://wiki.onosproject.org/display/ONOS/P4+brigade
https://www.opennetworking.org/stratum/
http://openvswitch.org
https://www.openstack.org/
http://doi.acm.org/10.1145/2815400.2815423
http://doi.acm.org/10.1145/1755913.1755947

1:42 G.P. Katsikas et al.

[92] Pfaff, B., Pettit, J., Koponen, T., Jackson, E. J., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer, J., Shelar,

P., Amidon, K., and Casado, M. The Design and Implementation of Open vSwitch. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation (Berkeley, CA, USA, 2015), NSDI’15, USENIX Association,

pp. 117–130. https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf.

[93] Raumer, D., Gallenmüller, S., Emmerich, P., Märdian, L., Wohlfart, F., and Carle, G. Efficient serving of VPN

endpoints on COTS server hardware. In 2016 IEEE 5th International Conference on Cloud Networking (CloudNet’16)
(Pisa, Italy, Oct. 2016). https://ieeexplore.ieee.org/document/7776595.

[94] Renwick, R. Increase Application Performancewith SmartNICs, 2017. https://www.openstack.org/assets/presentation-

media/Netronome-OpenStack-Summit-Marketplace-presentation.pdf.

[95] Robison, C. B. How to Set Up Intel Ethernet FlowDirector, June 2017. https://software.intel.com/en-us/articles/setting-

up-intel-ethernet-flow-director.

[96] Rosen, E. C., Viswanathan, A., and Callon, R. Multiprotocol Label Switching Architecture. Internet Request for

Comments (RFC) 3031, Jan. 2001. Updated by RFCs 6178, 6790, https://www.rfc-editor.org/rfc/rfc3031.txt.

[97] Schmidtke, Katharine. Facebook: Designing 100G optical connections, Mar. 2017. https://code.facebook.com/posts/

1633153936991442/designing-100g-optical-connections/.

[98] Sekar, V., Egi, N., Ratnasamy, S., Reiter, M. K., and Shi, G. Design and Implementation of a Consolidated Middlebox

Architecture. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation (Berkeley,

CA, USA, 2012), NSDI’12, USENIX Association, pp. 24–24. https://www.usenix.org/system/files/conference/nsdi12/

nsdi12-final96.pdf.

[99] Snort. Network Intrusion Detection & Prevention System, 2020. https://www.snort.org/.

[100] Sun, C., Bi, J., Zheng, Z., Yu, H., and Hu, H. NFP: Enabling Network Function Parallelism in NFV. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (New York, NY, USA, 2017), SIGCOMM ’17,

ACM, pp. 43–56. http://doi.acm.org/10.1145/3098822.3098826.

[101] Sun, W., and Ricci, R. Fast and Flexible: Parallel Packet Processing with GPUs and Click. In Proceedings of the 9th
ACM/IEEE Symposium on Architectures for Networking and Communications Systems (Piscataway, NJ, USA, 2013),
ANCS ’13, IEEE Press, pp. 25–36. http://dl.acm.org/citation.cfm?id=2537857.2537861.

[102] Taylor, D. E., and Turner, J. S. ClassBench: A Packet Classification Benchmark. IEEE/ACM Trans. Netw. 15, 3 (June
2007), 499–511. http://dx.doi.org/10.1109/TNET.2007.893156.

[103] The Linux Foundation. Data Plane Development Kit (DPDK). http://dpdk.org.

[104] The Linux Foundation. DPDK Generic flow API, 2020. https://doc.dpdk.org/guides/prog_guide/rte_flow.html.

[105] The Linux Foundation. DPDK MLX5 poll mode driver, 2020. https://doc.dpdk.org/guides/nics/mlx5.html.

[106] The Linux Foundation. DPDK’s Flow Performance Tool, 2020. https://doc.dpdk.org/guides/tools/flow-perf.html.

[107] The Linux Foundation. Kubernetes, 2020. https://kubernetes.io/.

[108] The Linux Foundation. Open Platform for NFV (OPNFV), 2020. https://www.opnfv.org/.

[109] Viejo, A. QLogic and Broadcom First to Demonstrate End-to-End Interoperability for 25Gb and 100Gb Ethernet,

2015. https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-

Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html.

[110] Woo, S., Sherry, J., Han, S., Moon, S., Ratnasamy, S., and Shenker, S. Elastic Scaling of Stateful Network Functions.

In 15th USENIX Symposium on Networked Systems Design and Implementation (NSDI 18) (Renton, WA, 2018), USENIX

Association, pp. 299–312. https://www.usenix.org/system/files/conference/nsdi18/nsdi18-woo.pdf.

[111] Wu, D., Chen, A., Ng, T. S. E., Wang, G., and Wang, H. Accelerated Service Chaining on a Single Switch ASIC.

In Proceedings of the 18th ACM Workshop on Hot Topics in Networks (New York, NY, USA, 2019), HotNets ’19, ACM,

pp. 141–149. http://doi.acm.org/10.1145/3365609.3365849.

[112] Yu, M., Yi, Y., Rexford, J., and Chiang, M. Rethinking Virtual Network Embedding: Substrate Support for Path

Splitting and Migration. SIGCOMM Comput. Commun. Rev. 38, 2 (Mar. 2008), 17–29. http://doi.acm.org/10.1145/

1355734.1355737.

[113] Zave, P., Ferreira, R. A., Zou, X. K., Morimoto, M., and Rexford, J. Dynamic Service Chaining with Dysco. In

Proceedings of the Conference of the ACM Special Interest Group on Data Communication (New York, NY, USA, 2017),

SIGCOMM ’17, ACM, pp. 57–70. http://doi.acm.org/10.1145/3098822.3098827.

[114] Zhang, W., Hwang, J., Rajagopalan, S., Ramakrishnan, K., and Wood, T. Flurries: Countless Fine-Grained NFs for

Flexible Per-Flow Customization. In Proceedings of the 12th ACM International Conference on Emerging Networking
Experiments and Technologies (New York, NY, USA, 2016), CoNEXT ’16, ACM, pp. 3–17. http://doi.acm.org/10.1145/

2999572.2999602.

[115] Zhang,W., Liu, G., Zhang,W., Shah, N., Lopreiato, P., Todeschi, G., Ramakrishnan, K., andWood, T. OpenNetVM:

A Platform for High Performance Network Service Chains. In Proceedings of the 2016 ACM SIGCOMM Workshop
on Hot Topics in Middleboxes and Network Function Virtualization (August 2016), ACM. http://faculty.cs.gwu.edu/

~timwood/papers/16-HotMiddlebox-onvm.pdf.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-pfaff.pdf
https://ieeexplore.ieee.org/document/7776595
https://www.openstack.org/assets/presentation-media/Netronome-OpenStack-Summit-Marketplace-presentation.pdf
https://www.openstack.org/assets/presentation-media/Netronome-OpenStack-Summit-Marketplace-presentation.pdf
https://software.intel.com/en-us/articles/setting-up-intel-ethernet-flow-director
https://software.intel.com/en-us/articles/setting-up-intel-ethernet-flow-director
https://www.rfc-editor.org/rfc/rfc3031.txt
https://code.facebook.com/posts/1633153936991442/designing-100g-optical-connections/
https://code.facebook.com/posts/1633153936991442/designing-100g-optical-connections/
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final96.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final96.pdf
https://www.snort.org/
http://doi.acm.org/10.1145/3098822.3098826
http://dl.acm.org/citation.cfm?id=2537857.2537861
http://dx.doi.org/10.1109/TNET.2007.893156
http://dpdk.org
https://doc.dpdk.org/guides/prog_guide/rte_flow.html
https://doc.dpdk.org/guides/nics/mlx5.html
https://doc.dpdk.org/guides/tools/flow-perf.html
https://kubernetes.io/
https://www.opnfv.org/
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://globenewswire.com/news-release/2015/01/27/700249/10116850/en/QLogic-and-Broadcom-First-to-Demonstrate-End-to-End-Interoperability-for-25Gb-and-100Gb-Ethernet.html
https://www.usenix.org/system/files/conference/nsdi18/nsdi18-woo.pdf
http://doi.acm.org/10.1145/3365609.3365849
http://doi.acm.org/10.1145/1355734.1355737
http://doi.acm.org/10.1145/1355734.1355737
http://doi.acm.org/10.1145/3098822.3098827
http://doi.acm.org/10.1145/2999572.2999602
http://doi.acm.org/10.1145/2999572.2999602
http://faculty.cs.gwu.edu/~timwood/papers/16-HotMiddlebox-onvm.pdf
http://faculty.cs.gwu.edu/~timwood/papers/16-HotMiddlebox-onvm.pdf

Metron: High Performance NFV Service Chaining Even in the Presence of Blackboxes 1:43

A Metron Protocol
The Metron controller needs to manage the resources of the underlying network. Such a network

might be comprised of programmable network elements (e.g., switches and routers) and/or servers

with programmable CPU cores and NICs. In the former case, the Metron controller relies on existing

network management protocols, such as OpenFlow [67], NETCONF [24], etc. Due to the absence of

protocols to manage CPU and NIC resources on servers, Metron introduces its own protocol [45]

and driver [43] to manage these resources, through a set of messages shown in Table 4.

Table 4. The Metron protocol specification for managing programmable resources on commodity servers.

Channel Message
Name Payload

Controller
↓

Server

FEATURES_REQ Server ID

GLOBAL_STATS_REQ Server ID

SC_DEPLOY_REQ Server ID, Service Chain ID, SW Configuration

SC_RECONF_REQ Server ID, Service Chain ID, SW Reconfiguration

SC_STATS_REQ Server ID, Service Chain ID

SC_DELETE_REQ Server ID, Service Chain ID

RULES_MONITOR_REQ Server ID, NIC ID

RULES_INSTALL_REQ Server ID, NIC ID, [Rule IDs, Rules]

RULES_DELETE_REQ Server ID, NIC ID, [Rule IDs]

SET_CTRL_REQ Server ID, Controller IP address & Port

GET_CTRL_REQ Server ID

DEL_CTRL_REQ Server ID, Controller IP address & Port

Server
↓

Controller

SERVER_REGISTER Server ID, Server IP address & Port

FEATURES_REP Server ID, Server features

GLOBAL_STATS_REP Server ID, NIC & CPU Statistics

SC_DEPLOY_REP Server ID, Service Chain ID, Status

SC_RECONF_REP Server ID, Service Chain ID, Status

SC_STATS_REP Server ID, Service Chain ID & Statistics

SC_DELETE_REP Server ID, Service Chain ID, Status

RULES_MONITOR_REP Server ID, NIC ID, [Existing Rule IDs]

RULES_INSTALL_REP Server ID, NIC ID, [Installed Rule IDs]

RULES_DELETE_REP Server ID, NIC ID, [Deleted Rule IDs]

SET_CTRL_REP Server ID, Status

GET_CTRL_REP Server ID, Controller IP address & Port

DEL_CTRL_REP Server ID, Status

When a server boots, a “SERVER_REGISTER” message is sent to the controller. This message

contains the IP address and port that the server uses to communicate with the controller. The

controller replies with a “FEATURES_REQ” message, asking the server for system-related features.

The three-way handshaking is completed after a “FEATURES_REP” from the server that contains its

ID, serial number, manufacturer, hardware and software versions. Moreover, the server advertises

the ID, vendor, and frequency of its CPU cores along with the technical characteristics of its

NICs. These characteristics include the ID, vendor, driver, speed, port type, hardware address,

and traffic dispatching abilities of each NIC. Note that modern commodity NICs offer different

traffic dispatching abilities, such as hash-based (i.e., using RSS) or flow-based (i.e., using NIC rules)

dispatching. As we introduced in §2.3, Metron exploits the deterministic nature of flow-based

dispatching to match and redirect each input packet to a designated CPU core, thus eliminating

inter-core packet transfers.

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

1:44 G.P. Katsikas et al.

At this point the controller is fully aware of the available resources of a server and this information

is stored in Metron’s distributed storage, as described in §2.3.4. A “GLOBAL_STATS_REQ” message

is periodically issued by the controller to obtain global monitoring statistics, such as NIC and

CPU load counters. These counters are encoded in a “GLOBAL_STATS_REP” message, which

is sent as a response by the server. The controller can deploy a service chain by sending an

“SC_DEPLOY_REQ” together with a service chain ID and the software part of the service chain’s

configuration. This configuration contains the packet processing graph to be instantiated by the

server, the number of CPUs required for this service chain, and the NIC IDs associated with the

I/O vertices of the service chain’s processing graph. If the deployed service chain contains packet

processing operations that can be offloaded to the server’s NIC(s), the “SC_DEPLOY_REQ” is also

followed by a “RULES_INSTALL_REQ”, which encodes these operations as NIC rules. Once the

server installs these rules in the corresponding NIC(s), a “RULES_INSTALL_REP” is sent back to

the controller to advertise the installed rules per NIC. When the service chain is fully deployed, the

server replies to the controller with an “SC_DEPLOY_REP”. After a service chain has been deployed,

the controller can ask for service chain-specific run-time statistics by issuing an “SC_STATS_REQ”

message with the ID of the service chain. The Metron agent on the server collects NIC and CPU

core statistics (e.g., transmitted/received/dropped packets/bytes and per-core load) related to this

particular service chain and reports them with an “SC_STATS_REP” message.

If a service chain exhibits a load imbalance, then a scaling operation can be requested by the

controller by issuing an “SC_RECONF_REQ” message. The payload of this message contains the

ID of the service chain to be load balanced and the reconfiguration instructions to be executed by

the server that runs the software part of the service chain. For example, in §4 we discuss how the

controller splits traffic classes across multiple groups, each associated with a different tag, when

the load of these traffic classes exceeds a predefined threshold. In such a case, the controller will

instruct the server (through an “SC_RECONF_REQ” message) to allocate an additional CPU core, on

which the stateful processing graph of the split traffic classes will be instantiated. A reconfiguration

is complete when the dispatching policy for the split traffic classes is updated in the hardware via a

sequence of “RULES_INSTALL_REQ” and “RULES_DELETE_REQ” messages. These messages will

install the necessary rules to realize the updated dispatching policy, while removing the old rules

that correspond to the target traffic classes. That said, incoming packets that belong to the affected

traffic classes will now be tagged differently, thus dispatched to less loaded CPU cores.

To tear down a service chain, the controller issues both an “SC_DELETE_REQ” with the ID of the

service chain to be torn down and a “RULES_DELETE_REQ” to remove all of the rules installed by

this service chain. The server reacts by removing those rules (“RULES_DELETE_REP”), while killing

the software process responsible for the stateful part of this service chain (“SC_DELETE_REP”).

Finally, the Metron protocol allows dynamic (re-)association of servers with controller instances.

To do so, a network operator issues a “SET_CTRL_REQ” to the Metron controller’s RESTful

API. This request contains a server’s ID and the controller’s IP address and port, triggering a

corresponding request from the controller to the designated server. Once a server receives such

a message, it attempts to associate with the controller by initiating a three-way handshaking

process (“SERVER_REGISTER”, “FEATURES_REQ’, and “FEATURES_REP”) as described above.

Then, the server responds with a “SET_CTRL_REP”, which informs the controller of the status of

the association command. Similar messages are offered to observe the association status of a server

(i.e., through the “GET_CTRL_REQ” and “GET_CTRL_REP”) as well as to disassociate a server with

a controller (i.e., through the “DEL_CTRL_REQ” and “DEL_CTRL_REP” messages).

Received December 2018; revised December 2019; accepted May 2021

ACM Trans. Comput. Syst., Vol. 1, No. 1, Article 1. Publication date: May 2021.

	Abstract
	1 Introduction
	1.1 NFV Processing Challenges
	1.2 Metron Research Contributions

	2 System Architecture
	2.1 Overview
	2.2 Metron Data Plane
	2.3 Metron Control Plane
	2.3.1 Synthesis of Packet Processing Graphs
	2.3.2 Initial Resource Allocation
	2.3.3 Scalable Placement with Minimal Overhead
	2.3.4 Distributed Control Plane

	2.4 Routing (Updates) and Failures

	3 Integration of Blackboxes
	4 Dynamic Scaling
	5 Evaluation
	5.1 Implementation
	5.2 Testbed
	5.3 Large-Scale Deployment of Standalone Metron Service Chains
	5.3.1 Deep Packet Inspection at 40 Gbps
	5.3.2 Stateful Service Chaining at the Speed of 100 Gbps NICs

	5.4 Metron with Integrated Blackbox NF
	5.5 Metron's Dynamic Scaling at 100 Gbps
	5.6 Deployment Micro-benchmarks
	5.6.1 Impact of Increasing the number of Traffic Classes
	5.6.2 Diversity of Networking Hardware

	5.7 Metron's Placement in Large Networks

	6 Related Work
	6.1 NFV Management
	6.2 NFV Consolidation
	6.3 Hardware Programmability
	6.4 Hardware Offloading
	6.5 Server-level Solutions
	6.6 Industrial Efforts

	7 Conclusion
	8 Acknowledgments
	References
	A Metron Protocol

