
Towards a Cost-Effective Networking Testbed

Nikola Knežević, Simon Schubert and Dejan Kostić
School of Computer and Communication Sciences, EPFL, Switzerland

email: firstname.lastname@epfl.ch

ABSTRACT

The Internet is suffering from ossification. There has been

substantial research on improving current protocols, but the

vendors are reluctant to deploy new ones. We believe that

this is in part due to the difficulty of evaluating protocols

under realistic conditions. Recent wide-area testbeds can

help alleviate this problem, but they require substantial re-

sources (equipment, bandwidth) from each participant, and

they have difficulty in providing repeatability and full con-

trol over the experiments. Existing in-house networking

testbeds are capable of running controlled, repeatable exper-

iments, but are typically small-scale (due to various over-

heads), limited in features, or expensive.

The premise of our work is that it is possible to lever-

age the recent increases in computational power to improve

the researchers’ ability to experiment with new protocols

in lab settings. We propose a cost-effective testbed, called

MX, which emulates many programmable routers running

over a realistic topology on multi-core commodity servers.

We leverage open source implementations of programmable

routers, such as Click, and modify them to allow coexis-

tence of multiple instances in the same kernel in an effort

to reduce packet forwarding overheads. Our initial results

show that we outperform similar cost-effective solutions by

a factor of 2. Next, we demonstrate that grouping and plac-

ing routers on to cores which share the L2 cache yields high

performance.

1. INTRODUCTION

The Internet is suffering from ossification. For example,

despite numerous proposals for improving the BGP conver-

gence properties, these protocols have not been deployed.

Hence, there still exist in the Internet end-to-end connectiv-

ity problems that last for a few minutes. We believe that this

is in part due to the difficulty of evaluating new proposals

under realistic conditions and convincing router vendors to

deploy them.

As the bandwidth-delay products of the Internet links

keep increasing, issues with TCP’s convergence time,

throughput, and amount of queuing in these environments

are becoming more pressing. A load-factor based congestion

control approach holds great promise as it requires moderate

changes in routers (only to monitor and insert current load

data into packets) and endpoints (to use a congestion con-

troller that uses router feedback). This is just one example

of a next-generation protocol that requires router support.

Unfortunately changing the routers is difficult, as it typically

requires convincing the vendor to incorporate the new fea-

tures. Without a large set of users that demand new features,

the vendor is not willing to commit to the engineering ef-

fort, thereby closing the vicious circle. We believe that the

answer is in providing the networking researchers the ability

to subject the new protocols to realistic network conditions

(bandwidth, latency, losses, and even new hardware charac-

teristics) in controlled, repeatable experiments.

Recent work on wide-area testbeds [4] can help meet this

goal, but this typically requires substantial resources (equip-

ment, bandwidth) for obtaining the rights to use the testbed.

Further, while excellent for exposing the protocol to real

traffic, unexpected conditions, and failure scenarios (thus

making them irreplaceable in the last phases of protocol test-

ing), live testbeds make it more difficult to distinguish be-

tween real protocol issues and experimental noise. In con-

trast, network simulators (e.g., ns2) offer a higher degree

of control, but they can miss important system interactions.

In addition, they do not allow for the direct execution of

software prototypes. As a “middle ground” between sim-

ulation and wide-area testbeds, scalable emulation testbeds

can serve a crucial role in fulfilling the researchers’ needs.

In such an environment, it is possible to emulate a network

in which only some software routers are running a modi-

fied version of the control or data plane, and to examine

global behavior when the network is subjected to “destruc-

tive” faultloads, such as partial and network-wide upgrades.

Existing networking testbeds are capable of running con-

trolled, repeatable experiments, but are typically small-scale

(due to various overheads), limited in features, or expensive.

The premise of our work is that it is possible to lever-

age the recent increases in computational power to develop

a cost-effective emulation testbed which can enable the de-

sired controlled, high-fidelity network experiments. In this

paper, we describe the design MX, a testbed which can

run many programmable routers over an emulated topol-

ogy using multi-core machines. MX runs live, unmodified

protocols implemented in XORP [10] and Click [14] over

Internet-like topologies.

2. MX DESIGN AND IMPLEMENTATION

In the remainder of this section we provide an overview

of MX, followed by a description of the key techniques we

use to address the challenges in meeting the requirements for

networking testbeds.

1



2.1 Overview

Routing control plane
(XORP)

Forwarding data plane
(Click and Modelnet)

E
n
d
-n
o
d
e
 

p
ro
to
c
o
ls

Figure 1: Overview of MX components

Figure 1 outlines the three main components of the MX

testbed, each of which can run on separate machines.

In the control (routing) plane, we use XORP [10], an ex-

tensible routing platform. Since this component is only re-

sponsible for routing table computations (and no forward-

ing), we can collocate several XORP instances on a single

machine.

The data plane consists of modified versions of Click [14]

and ModelNet [15]. ModelNet is responsible for emulating

network links, modeling losses, bandwidth, and delays.

We have observed that the router thread placement on the

CPU cores affects performance. Thus, an important chal-

lenge is to design and implement a core allocator. This com-

ponent of the data forwarding plane should use the emulated

link traffic statistics and the CPU statistics to determine the

thread-to-core mapping for high-throughput. Whenever the

core allocator determines that the system will benefit from

running a specific Click router on a different core, it moves

(and pins) the router to the new core. When the traffic pat-

terns change, the core allocator reassesses the router alloca-

tion, and possibly reassigns some routers to different cores.

Figure 2 shows one possible assignment of routers to CPU

cores over a sample topology. The core allocator does not the

alter the emulated network topology in any way; it merely

changes the mapping of Click routers to CPU cores. We are

currently implementing this component.

Figure 2: An example showing possible allocation of

routers to CPU cores in MX.

The third MX component comprises the end-host (edge)

plane where we can run different end-host protocols. We

adopt the approach used inModelNet, where one or more ap-

plication instances can be multiplexed on a single machine.

2.2 Implementation Highlights

We took several steps in modifying Click to enable it

to support multiple instances running on the same phys-

ical hardware. First, FromDevice/ToDevice are now

taking packets from a ModelNet queue, removing the need

for Click to access the actual NIC. Second, we removed

all global objects, and had them encapsulated in router in-

stances. As Click uses a concept of handlers to interact with

the environment via the filesystem interface, we modified

the handler handling code to work on instances (rather than

on the single global object). Now, each virtual router has its

own filesystem subtree. Finally, we modified Click so it runs

in a kernel thread, instead of the net interrupt callout.

We modified XORP so as to not install any route on the

host machine. Instead, the XORP instances transmit the

routing changes via a dedicated channel to the data plane.

2.3 Meeting the Testbed Requirements

As the research community moves toward the future Inter-

net, it needs networking testbeds that will let researchers try

out their ideas. An ideal networking testbed should satisfy

several, sometimes conflicting, goals. Here we discuss these

requirements and outline how MX tries to meet them.

Ability to run standard protocol implementations. A

testbed should be able to run the same (or slightly modified)

version of a protocol as if used in the real environment. This

approach ensures that observations made in the test run cor-

respond to reality, thus increasing vendor confidence in the

protocol implementation.

MX supports standard protocol implementations (OSI

level 3 and higher) by using XORP and Click as develop-

ment platforms for the routing and the forwarding plane, re-

spectively. Since both of these platforms are extensible, MX

shares the same feature. All the changes we made to Click

and XORP are invisible to the end user. Moreover, MX sup-

ports testing of user-level application protocols, as all traffic

from end-node machines (Figure 1) is sent through the core.

Full control of the experiments/repeatability. Certain

failure scenarios can occur rarely in live deployments. Thus,

the testbed should offer full control over the topology char-

acteristics and faultloads used in the experimentation. Doing

so can significantly speed up the development process. An-

other related point is repeatability – the testbed should allow

the researcher to run the same experiment several times un-

der identical conditions. This requirement is especially im-

portant during debugging, and is a basic requirement for do-

ing scientific work. If the conditions are changing from one

experiment to another, the researcher will have difficulty in

separating the behavior of the protocol from that of the envi-

ronment.

2



With the full control of the testbed hardware and of the

code running in all three planes (control, data and applica-

tion plane), there is a high amount of repeatability in the

MX experiments. However, we cannot guarantee complete

repeatability, since there may be losses and timing issues, i.e.

during a specific experiment a packet P1 can arrive at router

R1 before packet P2 reaches router R2, and vice-versa dur-

ing another execution. Finally, performance of the testbed

depends on the number of routers and interconnects, thus re-

peatability is maintained only across the same experiment

configuration.

Realistic network conditions. As the ultimate goal of the

researcher or developer is to have the protocol deployed, the

testbed should offer the ability to subject the protocol under

scrutiny to realistic topologies, bandwidth, latency, packet

loss and other failure conditions. In addition, the testbed

should be able to carry live traffic from Internet users, or

those that have opted in to try out the new protocol.

It is not our goal to create a platform to research data plane

forwarding performance, since this is highly dependent on

the specifics of the forwarding hardware in use. Instead,

we target research on control and data plane correctness and

functionality. As a result, MX is not designed to carry live,

multi-gigabit link bandwidths. Yet, we try to make most ef-

ficient use of the available hardware to provide an aggregate

bandwidth as high as possible.

Like ModelNet, MX can emulate all bandwidth, latency,

packet loss, and link failure conditions. These problems can

be modeled as either transient or permanent. Furthermore,

MX can emulate router failures, and we plan to add a router

NIC failures emulation capability in the future. We also plan

to incorporate the ability to replay live traffic and observed

faults, which can be useful when subjecting the protocols to

the real world routing problems, e.g., [1].

Scalability. The testbed should scale well with increasing

number of underlying components (routers, links), as well

as increasing number of flows and their volume. Certain

protocol features may only manifest themselves under high

loads or high failure event rates. Thus, it is important that

the testbed can support such scenarios.

We achieve good scalability by using the following ap-

proaches:

• We minimize the use of locks and use lock-less data

structures to the fullest extent possible.

• We eliminate important overheads in packet process-

ing by running all data plane modification tasks in the

same kernel.

• We try to make an effective use of the L2 (and in recent

architectures, L3) caches. Accessing memory can be

time-consuming, especially since packets are spending

a considerable time within the system. This time is

directly proportional to the bandwidth-delay product.

MX’s performance depends on the number of routers per

core. There is a lesser degree of dependency on the CPU uti-

lization, while the total memory bandwidth is currently the

most important factor [7]. As the number of routers grow,

there are more packets in flight. In turn, this increases the

total amount of data going through the memory subsystem,

which can then become the bottleneck. More recent work [6]

demonstrates that modern architectures do not suffer from

this bottleneck, allowing for even higher scalability.

MX currently does not scale beyond one machine. How-

ever, it is built on ModelNet, which supports multiple for-

warders, thus we believe that with certain engineering effort

MX can span over multiple machines. Ethan et al. [8] point

out that the performance penalty caused by increased traf-

fic among forwarders can be reduced by clever partitioning

of the topology. Furthermore, using an approach like time-

dilation [9] can offer emulation of larger or high-throughput

topologies.

Isolation Being able to isolate one experiment from another

is a prerequisite for achieving repeatability. Under heavy

load from multiple users, the testbed should not suffer the

tragedy of commons, in which all users are experiencing

poor performance. Instead, we believe that it is necessary to

offer some form of resource allocation and isolation that will

provide guaranteed performance to the fullest extent possi-

ble.

Our approach for achieving isolation is to have a single-

user testbed. As MX requires only a few physical machines,

this is a realistic design choice. MX has fast deployment

times, enabling a couple of researchers to share a single for-

warder using time multiplexing.

Accuracy Often, striving for cost-effectiveness can result

in over utilization of resources or unforeseen interference

among the components. It is nevertheless important to guar-

antee accuracy while running high-throughput, complex sce-

narios. Doing so helps to ensure the repeatability of the ex-

periments. Most importantly, it makes the results obtained

on the testbed trusted and repeatable in live deployments.

MX maintains accuracy by implementing requirements

for isolation and scalability.

Cost-effectiveness. A high-performance testbed can al-

most certainly be built by employing extensive hardware re-

sources. However, we believe that a testbed should have a

low barrier to entry, to increase the number of researchers

that can use it. Thus, the testbed should make efficient use

of low-cost, commodity components such as off-the-shelf

servers and networking switches and cards.

MX tries to maximize the utilization of the hardware re-

sources, and therefore represents a cost-effective testbed.

It leverages the ubiquity of multiple cores and commodity

servers.

3. EVALUATION

In our evaluation, we address the following questions:

1) How well does MX scale compared to fully virtualized

environments? 2) How do the L2 cache and router place-

ment affect the testbed performance?

3



3.1 Experimental Setup

In order to answer these two questions we conducted three

experiments. Our hardware platform is an Intel SR1560 Se-

ries rack 1U server with 2 Intel Quad-Core Xeon X5472 pro-

cessors running at 3 GHz (Figure 3). Each CPU is equipped

with 12 MB of L2 cache (2 x 6MB). The machine has 8

GB of 800 MHz RAM that is accessible over the 1600 MHz

Front Side Bus. We used FreeBSD-RELEASE-p3 7.1 for

the MX related experiments, running Click 1.6.0 with our

patches to make it work under FreeBSD.

Our point of comparison is a setup in which multiple Click

instances run in separate kernels, on top of Xen. This setup

(called Xen/Click from now on) corresponds to the existing

cost-effective approach for networking testbeds (the more

expensive alternative being to run one Click instance per

physical machine). For these experiments we use Debian

Linux with the 2.6.26-1-xen-amd64 kernel, whereas Click

was the same 1.6.0 version as in the MX setup. To repli-

cate MX’s ability to emulate link conditions, we intercon-

nect Click instances via virtual links. The NICs sharing the

same virtual link were connected to the same bridge. The

link parameters were created using tc [3]. With tcwe were

able to set a virtual link’s bandwidth and latency, which we

later verified with ping and netperf.

In all of our experiments we used the string topology in

which every router (except the first and the last) has one pre-

decessor and one successor. The first router in the row gener-

ates packets using the Click’s InfiniteSource element that are

addressed for the unused NIC of the last router. Each router

runs a standard IP router Click configuration and touches

each packet. At the last router we discard all packets, while

keeping track when we received the first and the last packet.

This procedure enables us to measure the throughput of the

configuration.

L2

L1

Core

0

L1

Core

1

L2

L1

Core

2

L1

Core

3

CPU 0

L2

L1

Core

4

L1

Core

5

L2

L1

Core

6

L1

Core

7

CPU 1CPU 0 CPU 1

Northbridge
800 MHz

memory bank(s)

1.6 GHz FSB

Figure 3: CPU and memory architecture of the Intel

SR1560 server.

3.2 Scalability

In the first experiment we compare the scalability of MX

and Xen/Click by measuring the performance of forward-

ing small packets (74 bytes in size). We vary the number

of routers involved, as well as the router placement (Fig-

ure 5 shows the placement details). Each box in Figure 5

represents one core in the system, while each number repre-

sents one router. Arrows point in the way packets traverse

the system. Figure 4 shows the throughput (in thousands of

packets per second) of each configuration. As the number

of routers increases, MX performance becomes several or-

ders of magnitude better than Xen/Click. As configuration

D and E on Figure 4 shows, Xen/Click based solution is able

to pass only 17.71 and 29.84 packets per second, respec-

tively. In these configurations, there were 4 routers running

on the same core; the biggest impact on the performance was

switching between VMs. As each Click router in MX runs as

a kernel thread (and packets are not even crossing the kernel

boundaries) MX scales significantly better.

Xen/Click performs better than MX only in the configura-

tion with a single Click router, which prompted us to inspect

possible causes. It turns out that Click is more optimized and

up-to-date for Linux. Some parts of the FreeBSD-related

code were not updated since FreeBSD 4.1. Also, the sched-

uler and task related sections were not as up-to-date as their

Linux counterparts.

 0.01

 0.1

 1

 10

 100

 1000

 10000

A B C D E F

k
p

p
s

Configurations

Xen/Click
MX

Figure 4: Comparison of scalability of Xen/Click and

MX under different configurations (y-axis is in log-scale).

3.3 Router Placement

Figure 3 shows the memory architecture of the server we

use for our experiments. Each core has its own small L1

cache, and L2 caches are shared by pairs of cores. Each CPU

is connected to the memory banks though the northbridge

via one Front-side bus. The major obstacle in achieving high

throughputs in such environment is the hierarchical structure

of memory, and the limited throughput of the memory bus.

Once a packet reaches the NIC, the driver transfers it to

main memory using DMA. Then the packet is copied to the

L2 cache of the core which processes it. If the next core in

line to process this packet does not share the L2 cache with

the previous core, the modified portion of the packet will

be transferred back to main memory and subsequently the

whole packet will be copied to the L2 cache of the following

core.

4



Figure 5: Configurations used in scaling experiments

(Figure 4).

If these actions repeat for each hop in our virtual topol-

ogy, significant memory bandwidth is lost on these transfers.

Moreover, the whole system slows down, because new pack-

ets can not be transferred. Thus, it is important to keep the

packets in L2 cache as much as possible.

Figure 6 shows how the MX throughput changes as we

vary the placement of the routers (depicted in Figure 7).

In this experiment, the emulated links between routers are

set to have infinite bandwidth. For each configuration, the

throughput is shown for 74, 576, and 1500-byte packets.

As expected, larger packets increase the throughput that we

can achieve, although the number of packets drops. We sus-

pect this is due to the routers spending more time with larger

packets.

At the extreme, the configurations on the right-hand side

of the bar chart exercise more packet transitions from one

CPU socket to another, putting stress on the memory sys-

tem. As seen in Configurations X, Y, and Z, as soon as we

start shipping packets between different CPU sockets, MX

forwarding performance starts to decrease. Configuration P,

Q, and R see a smaller drop in performance, although there

is the same number of transitions as in Configurations X, Y,

and Z, due to Intel’s Cache snooping filter [2], which saves

memory bandwidth if the data is in a nearby cache.

Figure 6 also supports a hypothesis that the increase in the

number of different L2 caches touched by a packet results in

lower performance than the case involving a single L2 cache.

4. RELATEDWORK

4.1 Routing and Forwarding

MX is built using Click [14] and ModelNet [15] (for the

forwarding plane), and XORP [10] (for the routing control

plane). The Click [14] modular router is an open-source

framework for building routers. Click was designed to be

efficient and fast, while maintaining extensibility. Special

 0

 50

 100

 150

 200

 250

P Q R X Y Z

k
p

p
s

Pinning configuration

74B
576B

1500B

Figure 6: Throughput of the same MX configuration

with 4 routers, using different router-to-core pinnings.

Figure 7: Description of different pinnings used in router

allocation experiments (Figure 6).

care was taken to make Click work efficiently on multi-core

systems. XORP [10] is an extensible open-source routing

platform which offers implementations of many routing pro-

tocols.

The work by Egi et al. [7] shows that the forwarding

performance of modern software routers is rather good. It

further shows that L2 caches and unified memory architec-

tures represent a bottleneck even for a single router running

on commodity hardware. Along similar lines, Dobrescu et

al. [6] propose to use a cluster of machines to achieve high

throughput of a single IP router. Instead of targeting raw for-

warding bandwidth, MX emulates an entire network topol-

ogy on a single multi-core machine.

4.2 Testbeds

Emulation testbeds provide users with great control over

the host and network environments and offer easy repro-

ducibility, at the expense of live network conditions. Wide-

area testbeds provide real network conditions with less re-

peatability and control over the experiment. Emulab [16]

5



was one of the first large-scale network emulators. It is a

shared infrastructure, with many machines, routers and in-

terconnects. To provide isolation of users, at most one ex-

periment runs at any time. Users need to load their own

virtual machines before the experiment. This contrasts with

quick deployment in MX, where users just need to load the

topology and router configurations.

Work by Hibler et.al [11] improves Emulab’s scalabil-

ity by leveraging FreeBSD’s jails [12] to virtualize all re-

sources. Jails offer the minimum level of virtualization that

provides transparency to applications. Since jails cannot run

kernel modules, they cannot run modified routing plane soft-

ware (e.g., Click) in kernel mode (which is required for high

performance). Further, because MX has fewer overheads we

believe it requires fewer physical machines to emulate the

same extensible router topology.

ModelNet [15] is a large-scale network emulator, that sup-

ports hundreds of thousands of links. It offers accurate em-

ulation of link losses, delays and bandwidth. Unfortunately,

it does not support any data plane packet modification (e.g,

cannot run traceroute), and all packet routes are computed

and set before the experiment. The only known extensions

toModelNet that enable data plane modifications were XCP-

related and were not made public [17].

VINI [4] is a virtual network infrastructure that allows

network researchers to evaluate their protocols and services

in a realistic environment. VINI uses XORP and Click, over

a logical network topology; OpenVPN is used to connect

the nodes in a virtual network. Unlike MX, VINI is a shared

infrastructure running across many nodes, thus sacrificing

some controllability. PL-VINI, a version of VINI running

over PlanetLab, suffers from low forwarding speeds as it

runs programmable routers in user mode.

A new implementation of VINI called Trellis [5] improves

the performance and capabilities of PL-VINI by moving

the virtual networking into the Linux kernel, thus enabling

faster basic packet forwarding and traffic shaping via stan-

dard Linux tools. Trellis leverages container-based virtual-

ization (like VServer and NetNS) to achieve isolation and

improve performance. In this sense Trellis is similar to MX.

However, we are reducing the time a packet has to spend in

the networking stack, thus improving the throughput further.

In our approach, forwarding is done in the kernel, while in

the case of Trellis forwarding with data plane modification

is done in the user mode.

Keller et al. [13] offers an approach for running mul-

tiple virtual routers on a single piece of hardware using

source code virtualization. Instead of compartmentalizing

the router resources, the configurations are merged into the

configuration of a single, large router. As in our approach,

each routers’ configuration runs in a separate kernel thread.

In contrast with our goal of emulating an entire topology

within a single machine, their work improves the perfor-

mance when a physical machine is shared by different router

instances in multiple virtual networks.

5. CONCLUSIONS

We presented MX – an inexpensive large-scale network-

ing testbed. As previous work shows, forwarding perfor-

mance of modern software routers is rather good. Following

these results, we show that a modern x86 server can take a

role of a large-scale network testbed, emulating link charac-

teristics as well as enabling data plane modification at the

endpoints of these links. By isolating each Click router in a

separate kernel thread, we allow one physical machine to be-

have as multiple routers. Further, we addedModelnet to con-

nect the routers with virtual links to emulate a full topology.

This approach in building networking testbeds can allow re-

searchers to quickly and inexpensively test their protocols.

Acknowledgments

This project is supported in part by a grant from the Hasler

foundation (grant 2103). Simon Schubert is supported in

part by a Microsoft Research PhD Scholarship.

6. REFERENCES
[1] Czech provider causing mayhem. http://www.renesys.com/

blog/2009/02/longer-is-not-better.shtml.

[2] Intel 5400 chipset memory controller hub (mch). http://www.

intel.com/Assets/PDF/datasheet/318610.pdf.

[3] Linux advanced routing & traffic control. http://lartc.org/.

[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In

VINI Veritas: Realistic and Controlled Network Experimentation. In

SIGCOMM, 2006.

[5] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier,

N. Feamster, L. Peterson, and J. Rexford. Hosting Virtual Networks

on Commodity Hardware. Technical Report GT-CS-07-10, Georgia

Tech Computer Science, Jan 2008.

[6] M. Dobrescu, N. Egi, K. Argyraki, B.-g. Chun, K. Fall,

G. Iannaccone, A. Knies, M. Manesh, and S. Ratnasamy.

RouteBricks: Exploiting Parallelism to Scale Software Routers. In

SOSP, Oct 2009.

[7] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, and F. Huici.

Towards High Performance Virtual Routers on Commodity

Hardware. In CoNEXT, Dec 2008.

[8] K. Y. Ethan, E. Eade, J. Degesys, D. Becker, J. Chase, and A. Vahdat.

Toward Scaling Network Emulation using Topology Partitioning. In

MASCOTS, Oct 2003.

[9] D. Gupta, K. Yocum, M. McNett, A. C. Snoeren, A. Vahdat, and

G. M. Voelker. To infinity and beyond: time warped network

emulation. In SOSP, Oct 2005.

[10] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.

Designing Extensible IP Router Software. In NSDI, May 2005.

[11] M. Hibler, R. Ricci, L. Stoller, and J. Duerig. Large-scale

virtualization in the emulab network testbed. USENIX ATC, Jan 2008.

[12] P.-H. Kamp and R. N. M. Watson. Jails: Confining the Omnipotent

Root. In SANE, May 2000.

[13] E. Keller and E. Green. Virtualizing the Data Plane through Source

Code Merging. In PRESTO, Aug 2008.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The

Click Modular Router. ACM Trans. Comput. Syst., 18(3), 2000.

[15] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase,

and D. Becker. Scalability and Accuracy in a Large-Scale Network

Emulator. In OSDI, Dec 2002.

[16] B. White, J. Lepreau, L. Stoller, and R. Ricci. An Integrated

Experimental Environment for Distributed Systems and Networks.

ACM SIGOPS Operating Systems Review, Jan 2002.

[17] K. Yocum and J. Chase. Explicit Rate Control for Anypoint

Communication. Technical Report CS-2004-05, Duke University,

July 2004.

6


