
OF.CPP: Consistent Packet Processing for OpenFlow

Peter Perešíni†∗, Maciej Kuźniar†∗, Nedeljko Vasić†, Marco Canini♯, and Dejan Kostić‡

†EPFL ♯TU Berlin / T-Labs ‡Institute IMDEA Networks
†<name.surname>@epfl.ch ♯m.canini@tu-berlin.de ‡dkostic@imdea.org

∗ These authors contributed equally to this work

ABSTRACT

This paper demonstrates a new class of bugs that is likely
to occur in enterprise OpenFlow deployments. In particu-
lar, step-by-step, reactive establishment of paths can cause
network-wide inconsistencies or performance- and space-
related inefficiencies. The cause for this behavior is incon-
sistent packet processing: as the packets travel through the
network they do not encounter consistent state at the Open-
Flow controller. To mitigate this problem, we propose to use
transactional semantics at the controller to achieve consis-

tent packet processing. We detail the challenges in achieving
this goal (including the inability to directly apply database
techniques), as well as a potentially promising approach.
In particular, we envision the use of multi-commit transac-

tions that could provide the necessary serialization and iso-
lation properties without excessively reducing network per-
formance.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Network operating systems

Keywords

Software-Defined Networking, Consistency, Multi-commit
transactions, ACID

1. INTRODUCTION
Software-defined networking (SDN), and OpenFlow in

particular, is increasingly being deployed. Despite having
access to a logically centralized view of the network, when
using any of the popular controller frameworks (e.g., NOX,
POX, FloodLight) the network programmer uses the low-
level OpenFlow interface. Thus, she still has to deal with
the asynchronous, distributed nature of the underlying net-
work.

In this paper, we demonstrate a new class of bugs that
can cause network-wide inconsistencies or performance- and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

space-related inefficiencies. In the first example, the con-
troller that installs rules on a switch-by-switch basis can
create a forwarding loop after an event that alters the topol-
ogy. In the second example, a controller running the learn-
ing switch application floods a packet toward the (unknown)
destination host, and learns the destination’s location when
this responds to one of the flooded packets. The remains of
the flood can then cause additional, unnecessary rules to be
installed in the network, along which a packet storm might
occur.1

These bugs can have serious consequences. Specifically,
once created, the forwarding loop (first bug) stays until the
rules expire. For the second example, when the rule ampli-
fication problem manifests itself, on average 30% more rules
get installed in our experiments. The excess rules can de-
crease the network performance as a whole due to limited
TCAM space in the switches, and sometimes limited intra-
switch bandwidth for new rules [4].

The underlying cause for the problem is inconsistent
packet processing; as the packet(s) traverse the network they
do not encounter consistent state at the controller (after be-
ing forwarded by switches with no rules for them). In the
learning switch for example, it is the response from the host
that changes the state in the controller in a way that nega-
tively affects the remaining flooded packets.

Although this problem may not manifest in environments
that are running a proactive controller, it is nevertheless
important. First, it is likely to occur in enterprise Open-
Flow deployments where there is less of a chance of hav-
ing a thoroughly maintained host map. Second, supporting
zero-configuration requires a reactive controller. Third, ad-
ministrators often insist on having control over the flows, to
implement e.g.traffic redirection through middleboxes. The
existence of hybrid networks and/or multiple controllers can
also prevent installation of rules on entire paths. Finally,
some controllers have to retain the ability to act in a reac-
tive manner because there might not be enough rule space
(either wildcarded or exact match).

Recent work in this space addresses some issues with the
low-level OpenFlow API. For example, Monsanto et al. [12]
propose programming language techniques that raise the
abstractions for managing SDNs and Reitblatt et al. [14]
propose general mechanisms for managing network updates.
However, they do not solve the problem described here.
Specifically, consistent updates [14] deal only with the state

1We refer to this problem as the “rule and packet amplifica-
tion” problem (rule amplification for short).

in the switches, whereas the inconsistent packet processing
problem has to do with the state at the controller itself.

To mitigate this problem, we propose to use transactional
semantics at the controller to achieve consistent packet pro-

cessing. However, we do not advocate a straightforward ap-
plication of the classic ACID (Atomicity, Consistency, Isola-
tion and Durability) semantics. Numerous issues discourage
its use, including: (i) lack of clear specification of the events
pertaining to a single transaction, (ii) difficulty in knowing
when to commit (e.g., tracking when the last packet exits
the network is difficult and costly), and (iii) difficulty of
rolling back network state and packets already sent from
the network’s edge.

To achieve the desired isolation properties in the domain,
we envision the use of multi-commit transactions. The main
idea is to allow each event (e.g., PacketIn processing at the
controller) to run as a subtransaction and commit, while a
(high-level) transaction continues to exist. We carefully ex-
amine the possible orderings of state accesses and updates
caused by concurrent subtransactions, and specify when
they are allowed to commit. The (high-level) transaction
still consists of all events related to a particular packet. The
rule amplification problem for example would be avoided, as
all packets in a flood interact with the controller in isolation,
as if there are no other flows in the network.

The isolation properties provided by multi-commit trans-
actions are not complete. In particular, newer transactions
see the effect of committed subtransactions of older trans-
actions, while the older transactions do not see commits of
new transactions. This transactional semantics avoids the
difficult issues of: (i) rolling back an excessive amount of
network state on aborts, and (ii) knowing when to com-
mit a (large) transaction. As a result, our expectation is
that network performance will be the same or marginally
reduced. Note that our proposed semantics is different from
nested transactions [15]. The contributions of this paper are
as follows:

1. We identify a new type of bugs and their root cause—
inconsistent packet processing. (§2)

2. We examine the possibility of using traditional
database semantics for SDN packet processing. (§3)

3. We propose the multi-commit transactional model, a
first step toward addressing the problem. (§4)

2. INCONSISTENT PACKET PROCESS-

ING
In this section, we describe a new class of controller bugs

we tentatively call “inconsistent packet processing”bugs. We
first illustrate the problem on two examples.
Loop installation bug. Consider an OpenFlow controller
that installs a lowest latency path between the source and
destination on a switch-by-switch basis. The straightforward
implementation of such a controller contains a potentially
harmful race bug: if the topology changes in the middle of
path installation, the controller will install the rest of the
path according to the new routing. This can potentially
lead to a forwarding loop.

Assume host h1 sends a packet to destination host h2 in
the topology of Figure 1, with the s1−s3 link initially being
down. Then, the following sequence of events will result in
a forwarding loop in the network:

h1
10ms, initially down

10ms
100ms

s1

ctrl

s2

s3 h2

1.
2.

4.

5.

6.

3. (link up)

Figure 1: A loop formed by a buggy controller that
installs paths on a switch-by-switch basis.

1. h1 sends a packet to switch s1, which sends it to the
controller (because it has no rule for it);

2. the controller installs rule s1 → s2 (only way to reach
h2) and sends the packet along the path;

3. meanwhile, the low-latency link s1− s3 comes up;
4. s2 sends the packet to the controller (no rule);
5. the controller installs rule s2 → s1 (the shortest path

is now s2 → s1 → s3) and sends the packet;
6. rule s2 → s1 is installed, thus creating a forwarding

loop between s1 and s2;
Note that in a real deployment OpenFlow switches will
refuse to forward packets back to their ingress port and
simply drop them, thus creating a black hole instead of a
loop. One may wonder if this simple check (either in the
controller or in the switch) would prevent loops. Unfortu-
nately, a slightly extended version of the example will create
loops even if such checks are present as shown in the tech-
nical report [13].
“Rule amplification” bug. The second example involves
l2_multi (a component of the popular POX platform), a
multi-switch version of the learning switch that maintains a
mapping host 7→ (switch, port) for every switch in the net-
work. The controller code is involved in locating a destina-
tion host when a packet is directed to it. Specifically, when
the host location hdst is unknown, the controller instructs
the first switch that encounters a packet for hdst to flood the
packet along a spanning tree. As flooded packets reach the
adjacent switches, the controller instructs them to continue
flooding the packet. Once host hdst is reached and responds
with a packet of its own, the controller sees the reply packet
and learns hdst’s location. However, the remains of the flood
could still be traversing the network and when these dupli-
cate packets reach OpenFlow switches, they are once again
sent to the controller. Because the destination hdst is now
known, the controller routes these duplicate packets towards
hdst. Depending on the number of duplicates (which re-
flects network size) and topology, this may potentially gen-
erate a packet storm.2 Moreover, the controller installs the
(unnecessary) additional rules in the switches. Combined,
these two effects ultimately hurt the performance of other
flows in the network, as well as the overall network scalabil-
ity for two reasons. First, additional rules occupy precious
TCAM space. Second, the intra-switch bandwidth for rule
installation can be surprisingly small [4]. This phenomenon
manifests itself anytime the controller does not know the

2 Similarly to the previous example, the packet storm might
be mitigated by OpenFlow switches. If the shortest path
from flooded packet to hdst points back to the link the packet
came from, the OpenFlow switch will drop the packet unless
OFPP_IN_PORT is used instead of a port number.

end-host’s location, such as during controller startup, host
mobility or periodic timeouts.
Generalizing the bugs Both of our examples contain
a race condition. If we examine it more closely, the root
cause of the problem is what we term inconsistent packet

processing : i.e., the change of controller state while packets
traverse the network. More precisely, both mentioned con-
trollers were written with the assumption that the subse-
quent PacketIn handler executions for the same packet will
be handled with a state that was left from the last time a
packet or its duplicate was seen Unfortunately, this assump-
tion does not hold. More importantly, designing controller
programs which do not require this assumption is hard. In
the lowest path delay example, after receiving a topology
change event, the controller would need to invalidate not
only the inaccessible paths, but also all partially-installed
paths. Similarly, POX’s l2_multi module would need to
distinguish between copies of the flooded packet, and either
drop or flood them.

These bugs can have severe consequences. Once created,
the forwarding loop caused by the first bug stays in place
until the rules expire. When the rule amplification problem
manifests itself, on average 30% more rules get installed in
our experiments (Section 6).

3. ACID TASTE OF CHALLENGES
The cause of inconsistent packet processing is the absence

of atomic processing of events related to the same packet.
In both examples, the controller logic assumed isolation

from unrelated events while the chain of related PacketIns
was processed. These findings suggest examining the classic
ACID transactional model.
Defining transactions and their semantic. Intuitively,
a transaction is a set of related events which are to be pro-
cessed in isolation from other events. However, unlike tradi-
tional databases, in SDN there is no explicit notion of which
controller operations are related and should be processed as
a transaction. Requiring the programmer to specify which
events belong to which transaction would be hard because
the events in the network are asynchronous in nature and
can cause events to occur at the controller at different points
in time. Rather, we strive for a solution in which the con-
troller framework knows which events it should put together
as a transaction on behalf of the programmer.

In the rest of the paper, we will concentrate only on Pack-

etIn events.3 We state that a set of PacketIn events forms a
transaction (i.e., the events are related) iff they are all events
caused by a single packet and/or its duplicates. Work in
that direction is however orthogonal to this paper.
Commit! But when? We do not require the program-
mer to explicitly specify the end of transactions. Instead,
they end implicitly when the last packet associated with the
transaction leaves the network. Thus, we now face the issue
of identifying such events.
Rolling back transactions. Assuming we know when
the transaction ended and should be committed, we need
to take care of potential aborts, and rollback the modified
state as if the transaction never happened. Note that state
comprises not only the state of the controller, but also the
state of the network. Unfortunately, rolling back the state

3The controller processing a packet for which a switch did
not have a forwarding rule.

of the network, especially the packets sent from the network
edge, is infeasible.
The cost of enforcing ACID. The biggest problem in
trying to provide the ACID semantics is the fact that the
network cannot undo the packets that have been delivered to
end-hosts. Thus, providing atomicity and isolation comes at
a high cost : buffering every change to the controller and net-
work state including the switch rules being installed, and the
packets associated with the transaction. The location where
this additional data would have to be stored is orthogonal
to our discussion. A further problem is that buffering Pack-

etOut commands (which instruct switches to emit packets)
causes additional issues: if a packet was eventually destined
to reach a switch without any matching rule, we will not
receive the consequent PacketIn event, rather, we need to
emulate it. When it comes to dealing with packets destined
for end-hosts, there are two possible approaches for provid-
ing full ACID semantics: (i) have a shadow (emulated) copy
of the network and controller for each transaction; when the
transaction commits, copy the updated state back to the
original controller (including packets sent over the edge links
of the shadow network), (ii) use the real network, but have
the ability to intercept packets at the edge so they can be
dropped if a transaction aborts. The first approach is not
only expensive but increases the “inconsistency surface” as
the state of the network now needs to be synchronized with
the state of the shadow network.4 The second solution re-
quires nontrivial capability at the edge links and introduces
additional latency as packets would need to be delayed until
the transaction commits.

4. MULTI-COMMIT TRANSACTIONS
To overcome the challenges of introducing the transac-

tional model to SDN, we propose multi-commit transactions.
The main idea is to relax the atomicity requirement. Instead
of treating transactions as a single block of operations (which
is either executed or aborted as a whole), we leverage the
already present division of operations into different events.
This split provides a sweet spot between proper atomicity
and no atomicity at all. In essence, we treat every trans-
action as a set of subtransactions, with each subtransaction
corresponding to one event. The commit/abort question
is decided for each subtransaction separately and does not
affect the previous decisions. If a subtransaction aborts,
the state of the transaction rolls back to the state after the
last successful (subtransaction) commit. Subsequent sub-
transactions will continue from this state and will be able to
commit (unless another conflict occurs).

This model fits SDN because it solves both important
challenges: (i) how to buffer the transaction data so that
we can rollback easily, and (ii) deciding when to commit.
We simply buffer the current event’s actions until the end
of the event handler and then commit. This is in contrast
with a full ACID solution where we would need to buffer all
actions and packets of all the event handlers called during
the whole length of the transaction. Moreover, with multi-
commit transactions there is no need to know when the
transaction ends because we commit after each event. Af-
ter an appropriate timeout, we may however garbage-collect
the transaction metadata as there will be no subsequent sub-

4For example, consider a rule expiring in the real network,
while being still active in the shadow network.

transactions. In the rest of this section, we describe how we
can provide good consistency properties and what the exact
semantics of our model is.
Dependencies between transactions. The main reason
for relaxing atomicity was to avoid expensive packet buffer-
ing. This leads us to a new problem—any packet leaving the
network may potentially cause a response, i.e., traffic that
is causally related to that packet. A response packet will
start a second transaction that should be processed in isola-
tion. Isolation however breaks the dependency relationship
(causality) and may result in conflicts between transactions.

We illustrate this isolation problem using the same
l2_multi controller from section 2. This time, we assume
it uses transactions, i.e., the controller will process (flood)
clones of the original packet in isolation from other pack-
ets. The first packet from h1 to h2 starts transaction T1

which learns h1 and floods the packet and its duplicates
throughout the network. When host h2 responds, the re-
ply packet creates a new transaction T2. Now consider that
the original packet was still being flooded when the reply
packet is observed, i.e., T1 did not finish. Assuming perfect
isolation of controller state between T1 and T2, T2 learns
about h2’s location but does not know about h1 and thus
floods. Although flooding in both directions is harmless,
at commit time we will need to decide the state of both
transactions. Should we commit both of them even if they
are in a read-write conflict T1 = [read(h1), write(h2)] versus
T2 = [read(h2), write(h1)]?

In this case, committing both transactions does not create
an inconsistency. However, ignoring read-write conflicts or
employing an eventual consistency model in general does not
work for all controllers.5

To preserve dependencies, we need to take care of the
state that other (possibly concurrent) transactions see af-
ter each subtransaction of Ti commits. Because a commit
of subtransaction of transaction Ti might be accompanied
by packets sent to the edge of the network, any transaction
Tj starting after this commit must be able to see this com-
mit, even if Ti and Tj continue concurrently.6 On the other
hand, old transactions should not be able to see modifica-
tions made by the newer transactions (i.e., to ensure the
isolation property). In summary, let T1 and T2 be transac-
tions, with T1 starting before T2. Then, we would like the
following behavior (x is a part of the controller state):

• T1 and T2 both read x: Ok.
• T2 reads x after T1 writes x and commits: T2 will see

the write (Dependency)
• T1 reads x after T2 writes x and commits: T1 will not

see the write (Isolation).
Guaranteeing consistency. To avoid inconsisten-
cies in the controller, we need to provide serializability
for the transactions.7 In particular, this means that all
commits (subtransactions) of a transaction must be or-
dered together. When coupled with the dependency crite-
rion, this requirement forces the only possible serial order
T1,1, T1,2, . . . , T1,n1

, T2,1, T2,2, . . . , T2,n2
, T3,1, . . . where Ti,j

represents the j − th subtransaction of transaction i and

5 We include the example in the companion technical report
[13].
6 This violates the traditional isolation property but it is
required in our weak atomicity model.
7 We assume that a controller that is processing transactions
serially is correct as it will avoid race conditions.

[r(x), w(x,2), commit]

Figure 2: Illustration of the interaction between
transactions. T1’s write conflicts with already com-
mitted T2’s read. T1 must be aborted otherwise it
could create an inconsistency.

transactions are ordered by their starting time. This step
also finalizes our “behavior table” by adding the following
points:

• T2 writes x after T1 reads x and commits: T2 should
be able to commit.

• T1 writes x after T2 reads x and commits: This is
a read-write conflict and one of the subtransactions
needs to abort. As T2 is already committed, T1 needs
to abort

Committing/aborting. All reads and writes in a trans-
action are logged. At commit time, the transaction Ti is able
to commit either if (i) all pending operations are reads, or
(ii) there is no read-write conflict in the controller. Although
a write-write conflict of subtransactions does not necessarily
need to be aborted, a write-write conflict spanning several
subtransactions might cause inconsistencies. In our current
model, we simply convert all write-write conflicts to read-
write conflicts by requiring transactions to first read vari-
ables that are being written.

In the case a subtransaction aborts, we need to rollback
its state. Fortunately, aborting a subtransaction is easy—
because a subtransaction consists only of a single event han-
dler, we can simply buffer all the controller state changes and
network commands till the end of the handler. When the
subtransaction commits, the buffers are flushed and in case
of abort the buffers are cleared.

The possibility of some subtransactions aborting might
lead to a concern that this model can cause additional pro-
grammer effort and/or that the transaction itself might be
left in an inconsistent state. Here, we simply argue that
aborting a PacketIn event is equivalent to not receiving
that event in the first place. So, from the standpoint of
the controller, an aborted subtransaction is equivalent to a
lost packet—a situation that the controller should anyway
be able to handle.

Moreover, subtransaction aborts are rarely necessary.
Specifically, all read-only transactions are abort-free. Addi-
tionally, assuming a sequential execution of event handlers,
all transactions that write only in the first subtransaction
are also abort-free. We argue that most of the controllers
are performing most of their writes in the first subtransac-
tion and then they just read. Even if they continue writing
state, it is usually just rewriting the state with the same
values (e.g., re-learning MAC mapping), which is efficiently
equivalent to reads.

Finally, a careful reader might have noticed that in our
case the aborted subtransaction always belongs to an older
transaction. This might potentially lead to starvation. So

far we do not have evidence of this behavior but we need to
confirm this using experiments with more controllers.
Being optimistic. In addition to allowing our transactions
to commit several times, we also require each subtransaction
to be nonblocking. In particular, this requirement stems
from the fact that the transaction cannot block because of
other transactions (e.g., long-lived ones). Rather than rely
on a locking mechanism, we advocate to use a form of op-
timistic concurrency control [11]. Optimistic concurrency
control is especially useful in low-contention scenarios and
we expect controllers to be such. Moreover, it ensures that
read-only (sub)transactions will never fail.

5. PROTOTYPE
We have built an early prototype of OF.CPP for the

POX controller platform written in Python. The goal here
is to verify the feasibility of consistent packet processing.
Though, the prototype is not optimized in any way. We
leave the performance evaluation and any optimizations (es-
pecially in the transactional engine) for future work. Cur-
rently, the OF.CPP prototype does not buffer network oper-
ations, i.e., it does not provide full event rollback function-
ality. This is mainly because the controllers we tested do
not cause abort operations (the write happens only in the
first event/step). Moreover, the prototype does not garbage
collect transactions.
Usage. Using OF.CPP is simple, and we demonstrate this
by providing the new transactional semantics in a drop-in
replacement of the Python’s dictionary. The user only needs
to replace the controller’s global state dictionaries with this
new class. To relieve the programmer from specifying the
transactions boundaries, we wrap the PacketIn handler with
our own code.
Transactional dictionary. The main part of the proto-
type is TransactionalDict, the multi-commit transaction
dictionary (key-value store). The dictionary API is consis-
tent with the Python’s API except for several new methods
that are not visible to the programmer:

• dict.newTransaction(): creates a new transaction
and returns its id.

• dict.checkout(id): selects the currently active trans-
action. All read/write operations from now on will
belong to this transaction.

• dict.commit(): tries to commit all pending changes of
the current transaction. If there is a conflict, all pend-
ing changes are reverted and the transaction aborts
(an exception is thrown).

The standard dict[key] read/write dictionary access oper-
ations are logged and appended to the pending list of the
transaction.
Identifying transactions. To identify transactions, we
store a “transaction tag” inside the packet header. Our cur-
rent prototype uses the VLAN tag but it is easy to replace
it with any other usable header field. Upon receiving an un-
tagged packet, we create a new transaction and invoke the
checkout operation. Upon receiving the tagged packet, we
checkout the transaction with the id from the tag. Although
we would need to intercept all commands to the switches
that are related to the transaction, our prototype currently
intercepts only the PacketOut commands.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120

#
 r

u
le

s
 i
n

 s
w

it
c
h

e
s

Time (s)

standard l2_multi
transactional l2_multi

Figure 3: The number of rules installed by the stan-
dard and transactional versions of POX l2_multi in
multiple trace replays in Mininet.

6. EVALUATION
In this section, we examine: (i) the magnitude of the prob-

lem caused by the amplification bug in the POX l2_multi

controller, and (ii) the applicability of our OF.CPP proto-
type to solve the problem. We set up an experiment in a
Mininet [6] testbed with a Fat-Tree topology containing 20
switches and 16 end-hosts. Because the Fat-Tree topology
contains cycles, we enable the POX spanning-tree module,
which disables some links for flooding. This however affects
only packets forwarded to the special “flood” (OFPP_FLOOD)
port and leaves normal traffic unaffected. The experiment
consists of a replay of a short trace with seven flows, emu-
lating cold start of the controller. We modify the controller
to issue non-expiring rules and record the total number of
rules installed in the switches during the experiment.

We compare this number against the one obtained by a
transactional version of l2_multi running in our prototype,
which avoids the rule amplification. The results in Figure
3 indicate that the rule amplification bug manifests itself
across all experiments, albeit with varying intensity. On
average, there are 30% more rules installed. Finally, the fig-
ure shows that OF.CPP behaves consistently. We manually
confirmed that OF.CPP installs only the expected rules.

7. DISCUSSION AND FUTUREWORK
We view this paper as a promising start to introducing

a new transactional model into OpenFlow controllers. As
the number of OpenFlow programmers increases in enter-
prise environments, we believe that OF.CPP will be effec-
tive in eradicating the difficult-to-diagnose kind of bugs we
demonstrated in this paper. Next, we examine some poten-
tial questions:
How general is OF.CPP? To further demonstrate
OF.CPP’s generality, we plan to showcase its seamless inte-
gration into a few popular controllers. Doing so will require
analyzing the data structures used by these controllers and
developing their transactional counterparts.
What about other type of events? There are other
events besides PacketIns that might be important for the
controller. As an example, consider link up/down events.
Handling link up events in OF.CPP is easy as we can isolate
the event from the old transactions. Link down events can
be treated similarly if they do not conflict with concurrent
transactions. However, if a link down event affects rules
touched by a transaction, the transaction needs to abort.
In this case, OF.CPP will need to inform the controller
about the abort explicitly and the controller will then need
to clean-up the state of previous sub-transactions similarly
as in compensating transactions [10]. Although this scenario
requires special controller recovery logic, we still believe that

OF.CPP might have a value by helping to separate related
events into transactions and identifying conflicts.
Is network performance going to suffer? We will
run detailed micro-benchmarks, especially to examine the
effect of each planned optimization. We will also quan-
tify the network-wide performance. That said, we antic-
ipate marginal, if any, performance impact. For exam-
ple, although the events will effectively be serialized, the
“database” is having only one client, namely the controller.
Multithreaded controllers will start to get deployed, and
we will address the important issue of incorporating mul-
tithreading in our future work.

8. RELATED WORK
The most related work to ours is consistent updates [14].

The important difference is that while consistent updates are
solving the network-consistency problem, OF.CPP solves
consistency issues inside the controller. NICE [3] exercises
different network event orderings, while NDB [7] collects
packet traces. Although both tools can uncover consistency
problems (NICE in a model, NDB in production), they can
only report the existence of a bug and do not fix it. Header
Space Analysis [8] and VeriFlow [9] check the data-plane.
These tools can verify the current network configuration and
thus can detect the controller inconsistency only through
the data plane. Frenetic [5] programs are still written on a
switch-by-switch basis. Pyretic [12] maps high-level policies
to low-level rules. While this may protect high-level pro-
grammers from consistency issues, developers of the runtime
system would need to deal with these issues. Our idea of
multi-commit transactions is based on ideas from optimistic
concurrency control [11] and nested transactions [15]. Unlike
nested transactions, multi-commit transactions do not pre-
serve atomicity and cannot be fully rolled back. Instead, by
relaxing atomicity, multi-commit transactions can span long
periods of time without blocking. To ensure consistency, we
employ ideas from causal consistency [1] and serializabil-
ity [2].

9. CONCLUSION
In this paper, we have described a new class of problems

affecting SDN that stem from the lack of isolated packet
processing in OpenFlow controllers. We have detailed two
examples of this problem, that decrease network reliability
and performance, respectively. After discussing the inability
of directly applying the classic database techniques to mit-
igate this problem, we have proposed a new semantics that
we refer to as multi-commit transactions. Finally, we have
demonstrated the ease of incorporating this new model into
POX, a popular OpenFlow controller.

Acknowledgments

The research leading to these results has received funding
from the European Research Council under the European

Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC grant agreement 259110.

10. REFERENCES

[1] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and
P. Hutto. Causal memory: Definitions,
implementation and programming, 1994.

[2] P. A. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency control and recovery in database systems.
Addison-Wesley Longman, 1987.

[3] M. Canini, D. Venzano, P. Pereš́ıni, D. Kostić, and
J. Rexford. A NICE Way to Test OpenFlow
Applications. In NSDI, 2012.

[4] A. R. Curtis, J. C. Mogul, J. Tourrilhes,
P. Yalagandula, P. Sharma, and S. Banerjee.
Devoflow: scaling flow management for
high-performance networks. In SIGCOMM, 2011.

[5] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: a
network programming language. In ICFP, 2011.

[6] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible network experiments
using container-based emulation. In CoNEXT, 2012.

[7] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,
and N. McKeown. Where is the debugger for my
software-defined network? In HotSDN, 2012.

[8] P. Kazemian, G. Varghese, and N. McKeown. Header
Space Analysis: Static Checking for Networks. In
NSDI, 2012.

[9] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. Veriflow: Verifying network-wide invariants
in real time. In NSDI, 2013.

[10] H. F. Korth, E. levy, and A. Silberschatz. A formal
approach to recovery by compensating transactions. In
16th International Conference on Very Large

Databases, 1990.

[11] H. T. Kung and J. T. Robinson. On optimistic
methods for concurrency control. ACM Trans.

Database Syst., 6(2):213–226, June 1981.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing Software Defined Networks. In
NSDI, 2013.

[13] P. Peresini, M. Kuzniar, N. Vasic, M. Canini, and
D. Kostic. OF.CPP: Consistent Packet Processing for
OpenFlow. Technical report, EPFL, 2013.

[14] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for Network Update. In
SIGCOMM, 2012.

[15] R. F. Resende and A. El Abbadi. On the serializability
theorem for nested transactions. Inf. Process. Lett.,
50(4):177–183, May 1994.

	Introduction
	Inconsistent packet processing
	ACID taste of challenges
	Multi-commit transactions
	Prototype
	Evaluation
	Discussion and future work
	Related work
	Conclusion
	References

