
Public Review for

Path Persistence in the Cloud: A Study
of the Effects of Inter-Region Traffic

Engineering in a Large Cloud Provider’s
Network

Waleed Reda, Kirill Bogdanov, Alexandros Milolidakis, Hamid
Ghasemirahni, Marco Chiesa, Gerald Q. Maguire Jr., and Dejan

Kostić

This paper presents a detailed analysis of path persistence across the data
centers of Amazon Web Services. The authors deployed experiments using
virtual machines in all AWS availability zones, and use them to probe latency
between them. They designed a specific heuristics to measure path changes.
Results show that paths between Amazon data centers change frequently,
and leads to a latency penalty up to 32%. Overall, the paper shed an in-
teresting light to disentangle cloud infrastructure and performance. While
end-users are interested in the latency from the edge to the datacenter, show-
ing path inconsistencies between datacenters become crucial for applications
that route traffic within the same AWS network. For instance, in these days
when people are forced to resort to online collaborations, the end-to-end de-
lay becomes one of the uttermost indices to let multiparty applications work
properly. The results and methodologies presented in this paper allows the
community to better understand these implications.

Public review written by
Marco Mellia

Politecnico di Torino, Italy

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

Path Persistence in the Cloud: A Study of the Effects of Inter-
Region Traffic Engineering in a Large Cloud Provider’s Network

Waleed Reda
Université catholique de Louvain
KTH Royal Institute of Technology

wfhsr@kth.se

Kirill L. Bogdanov
KTH Royal Institute of Technology

kirillb@kth.se

Alexandros Milolidakis
KTH Royal Institute of Technology

miloli@kth.se

Hamid Ghasemirahni
KTH Royal Institute of Technology

hamidgr@kth.se

Marco Chiesa
KTH Royal Institute of Technology

mchiesa@kth.se

Gerald Q. Maguire Jr.
KTH Royal Institute of Technology

maguire@kth.se

Dejan Kostić
KTH Royal Institute of Technology

dmk@kth.se

A commonly held belief is that traffic engineering and routing
changes are infrequent. However, based on our measurements over
a number of years of traffic between data centers in one of the
largest cloud provider’s networks, we found that it is common for
flows to change paths at ten-second intervals or even faster. These
frequent path and, consequently, latency variations can negatively
impact the performance of cloud applications, specifically, latency-
sensitive and geo-distributed applications.

Our recent measurements and analysis focused on observing
path changes and latency variations between different Amazon aws
regions. To this end, we devised a path change detector that we
validated using both ad hoc experiments and feedback from cloud
networking experts. The results provide three main insights: (1)
Traffic Engineering (TE) frequently moves (TCP and UDP) flows
among network paths of different latency, (2) Flows experience
unfair performance, where a subset of flows between two machines
can suffer large latency penalties (up to 32% at the 95th percentile)
or excessive number of latency changes, and (3) Tenants may have
incentives to selfishly move traffic to low latency classes (to boost
the performance of their applications). We showcase this third
insight with an example using rsync synchronization. To the best of
our knowledge, this is the first paper to reveal the high frequency of
TE activity within a large cloud provider’s network. Based on these
observations, we expect our paper to spur discussions and future
research on how cloud providers and their tenants can ultimately
reconcile their independent and possibly conflicting objectives. Our
data is publicly available for reproducibility and further analysis at
http://goo.gl/25BKte.

1 INTRODUCTION
Cloud provider networks play an essential role in guaranteeing
Quality-of-Service (QoS) of tenant applications; however, little is
known about how traffic is routed in practice across such networks.
Network operators have long relied on Traffic Engineering (TE)
tools to optimize the flow of traffic within their networks, with
varying degrees of success. At the beginning of the 2000s, shortest-
path routing protocols, such as OSPF [28] and RIP, were prevalent
despite being ill-suited for TE operation [16]. Since these protocols

lack fine-grained routing control, TE optimization was infrequent
and suboptimal. TE optimization became prevalent with the advent
of MPLS technology [32] and later with the introduction of the
Software-Defined Networking [11] paradigm. Since then, Microsoft
and Google have reported performing TE optimizations of their
wide area networks with a 5-minute period [22, 29].

Are today’s TE optimizations hindering network traffic
performance? Despite the crucial role played by TE tools,
the impact of frequent TE optimization on the network traffic’s
performance has not been adequately explored. In this paper, we
take a first step in this direction by looking at the impact of TE on
cloud application’s traffic.

Cloud providers perform TE to efficiently utilize their network
resources. However, this goal may not align with the needs of
tenants’ applications and their associated traffic. Fig. 1 shows
the Round Trip Times (RTTs) of three different TCP connections
established between two machines located in two different Amazon
aws regions — namely Oregon and Virginia. Each TCP connection
uses a distinct TCP source port and periodically generates a ping
message tomeasure the RTT.We observe that each flow experiences
different RTT values. Moreover, these RTTs are relatively stable
around one value for a period of time before suddenly “jumping”
to a different value.

0 50 100 150

80
90

10
0

La
te

nc
y

(m
s)

Timestamp (s)

Flow A Flow B Flow C

Figure 1: TCP RTT measured between two Amazon VMs
deployed in Oregon & Virginia. The black dotted vertical
lines highlight moments when RTT latency changed and
indicate potential TE activity (e.g., path changes).

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

http://goo.gl/25BKte

This simple experiment leads to three observations: (1) TE is
operating at a time scale of seconds, (2) traffic flows may experience
frequent latency variations, and (3) TE may be unfair as some
flows consistently experience higher latencies (e.g. flow C) and/or
experience more frequent latency changes (e.g. flows A and C) than
others.

Highly-variable flow latencies can be cumbersome for
application developers. First, high-frequency oscillations in
inter-region latencies adds yet another source of uncertainty
for application developers — as Microsoft Bing’s [7] developers
observed [29]. Consequently, guaranteeing latency-related Service
Level Agreements (SLAs) for latency-sensitive geo-distributed
services [20, 23] can be difficult. Secondly, the performance of
congestion control algorithms, both loss-based and delay-based
ones, degrade under frequent latency changes, e.g., due to packet
re-ordering [8, 25, 35, 38]. Additionally. applications relying on UDP
can be negatively affected by packet reordering (e.g., VoIP [24]).
Finally, our results show that a fraction of “unlucky” flows can
suffer from high RTTs over prolonged periods (hours and days),
further exacerbating application performance problems. Our prior
work [9] shows that these traffic characteristics have existed
consistently for at least a few years (since January 2015) and our
continued measurements have shown that they are not transient.
This prompted us to take a deep dive and study this phenomenon
more comprehensively.

Measuring TE effects in a large-scale Cloud network. In this
paper, we study the effects of TE on flow latencies measured among
all 16 currently available Amazon aws regions, all of which are
connected via Amazon’s privately-owned infrastructure [17]. We
conducted measurements between up to 105 unique region pairs
to identify latency characteristics of traffic flows and thoroughly
study the three observations presented above.

Results and implications for TE& the design of applications.
Our measurements for this paper encompass data gathered over a
2-week span. We have also conducted several other measurement
snapshots for AWS from 2015 to 2019. All our data indicates that
flows frequently jump between paths that can have as high as
20% greater latency than the lowest observed latency path. We
corroborated our findings in discussions with cloud networking
experts.

Our analysis shows that the changes in latency are caused
by frequent routing changes and are potentially problematic for
delivering traffic that desires specific performance guarantees.
Moreover, we also found that, despite these frequent changes,
there is unfairness in the observed flow latencies — where some
flows get the lion’s share of low and consistent latencies while
others are penalized over long periods of time. Flow unfairness can
be undesirable, especially for latency-sensitive services deployed
across several geographic regions [37]. Last but not least, tenants
have incentives to monitor the latency observed per source port and
then selfishly move latency-sensitive traffic to low latency paths.
This could, in turn, overload certain paths and trigger a counter-
response from the TE mechanisms, a classic problem known as
“Selfish Routing” [33]. This paper does not aim to solve these
problems but rather exposes the current effects of TE. The hope

is that quantifying these effects would motivate the community
to tackle the challenges of designing TE mechanisms suitable for
cloud environments.

2 BACKGROUND
This section provides the necessary background on both cloud
network architectures and TE techniques to optimize the flow of
traffic in cloud networks.

Architecture of a cloud provider network. The three largest
cloud providers worldwide (e.g., Amazon AWS, Microsoft Azure,
Google Cloud Platform) deploy their networks using a similar
hierarchical structure. Within each cloud provider, a set of typically
more than 10 regions are interconnected by a globally-deployed,
singly administered, cloud backbone network infrastructure. All of
the regions are subdivided into availability zones, each consisting of
at least one datacenter (DC) network. Cloud tenants buy computing,
storage, and network resources within or across regions where their
services are deployed.

Traffic engineering basics. Network operators perform TE
to optimize the flow of traffic in their network, e.g., reducing
communication latency, ensuring fairness, and providing traffic
isolation without increasing packet drops. TE consists of a
closed control loop between a monitoring component and a route
computation component. This loop spans both the data- and control-
planes. The data-plane both forwards packets according to the
installedmonitoring& forwarding rules and collects traffic statistics.
The control-plane fetches the collected traffic statistics and feeds
them as input to the route computation engine, and then updates the
data-plane with newly computed routes (in the form of per-switch
forwarding rules).

Multipath forwarding mechanisms. Modern TE mechanisms
make extensive use of multipath forwarding [22] to split an
aggregate of traffic flows across different paths. Specifically, for each
aggregate of flows between two nodes in a network, the operator
specifies the splitting ratio of this traffic aggregate that should be
routed on each path [39]. The operator also specifies whether the
splitting of the traffic aggregate should be performed at the per-
flow granularity (i.e., packets with a common set of header fields
traverse the same path) or at the per-packet granularity (i.e., packets
are routed using some sort of weighted round-robin scheduler).
Network operators have traditionally operated networks using per-
flow splitting mechanisms, e.g., based on hash calculations on the
packet header (i.e., specific IP and TCP/UDP fields). The reason for
using per-flow mechanisms stems from the way TCP congestion
control (such as, NewReno and Cubic) reacts to the presence of
packet reordering by assuming network congestion, which may not
always be the case. Specifically, when the receiver of a TCP flow
receives packets out of order, it sends duplicate acknowledgments
(dupACKs) for the first missing packet in the received TCP stream.
When the sender receives three dupACKs, the sender assumes that
the network is congested and reduces its congestion window, and
consequently its sending rate. Packet reordering may arise when
a routing (re-)configuration takes place and a flow is moved from
a high latency path to a low latency path. This can happen, for

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

example, when network operators (or automated TE tools) update
any hash-based traffic splitting ratios in the network, which is an
operation known to cause flow rehashing [21, 39].

Evolution of TE in cloud networks. Traditional TE tools
and mechanisms (e.g., OSPF [28] and RIP [18]) are ill-suited for
supporting the ever-growing inter-region traffic of large cloud
networks. Such tools are tailored to shortest path routing and
only support uniform splitting ratios, thus they lack the fine-
grained routing control needed to effectively utilize network
resources. Consequently, wide-area network operators have long
relied on MPLS-based OSPF extensions for improved TE [15], by
periodically re-optimizing network routes using preconfigured
route computation algorithms (e.g., Constrained Shortest Path First
(CSPF)) according to the measured traffic volumes. Recently, the
three largest cloud providers (aws, azure, and gcp) transitioned to
SDN-based networks [17, 20, 22], in which network operators have
full control of the monitoring and route computation processes
using the well-defined interfaces between the control- and data-
planes.

3 MEASUREMENT METHODOLOGY
To understand the extent to which a cloud provider’s TE operations
affect the latency of traffic in their networks, we performed a study
across Amazon aws [17], the largest worldwide cloud provider
network in terms of market share [27].

Goals of the study. In Fig. 1, when our application established
three TCP connections to another region, we noticed that the
latencies were not only different among the three connections but
also changed over time and in a step-wise manner. Many questions
arise from this measurement: (i) are path changes the cause of the
steps in the RTT trace? if so, (ii) how and what is the persistence
of each path? (iii) what is the difference between the minimum
and maximum observed latency, (iv) are there source ports that
experience long-term better RTTs (and One Way Delay (OWD)
latencies) with respect to other ports? (v) do we observe the same
behaviour across all region pairs and to what extent?

In order to answer these questions, we performed a systematic
set of measurements of the aws inter-region network. We note that,
while we suspect that Amazon aws uses hash-based traffic splitting
mechanisms, our measurements and conclusions do not rely on any
specific assumptions of how the traffic splitting mechanisms are
implemented. Our first goal was to identify whether the step-wise
latency changes correspond to actual path changes (possibly due
to TE operation) and analyzing the frequency and extent of latency
changes both spatially — across different flows — and temporally.

3.1 Detecting TE activity
To detect latency changes that occur as a result of path changes,
we introduce a methodology for filtering out congestion noise.

Measuring RTT and OWD flow latencies. Before delving into
the intricacies of the algorithm, we first describe our measurement
setup. We performed both RTT and OWD measurements using
TCP and UDP flows. On all Virtual Machines (VMs) we use chrony
configured to access the Amazon Time Sync Service [6], which

provides high precision time synchronization. As we do not have
visibility inside the Amazon aws network or to its routing, we
assume flows can use different forward and backward paths for
their traffic. As such, from here on, we use the term “path” to simply
refer to the joint forward and backward communication paths used
by a flow for the RTT measurements and the forward path only for
OWD measurements.

Decoupling propagation delays from congestion. In Fig. 1,
one can easily observe that the latency experienced by a flow
consists of a base propagation delay (due to traversing a certain
geographical distance over a given routing path) and spurious
congestion delay. In this figure, we identified several moments (each
denoted by a black dashed vertical line) where the minimum latency
observed during a certain time window (i.e., the base propagation
latency) suddenly changes by at least 0.5 ms.

One way to infer TE activity in the cloud’s backbone network is
to detect these sudden changes in the base propagation latencies
while filtering out the congestion component — which otherwise
might be falsely interpreted as path changes resulting in an
overestimation of TE activity. This problem is well-known and
several techniques have previously been proposed to extract base
propagation delay from latency measurements when possible (i.e.,
when congestion is limited and buffers periodically drain) [2, 10, 26].
Roughly speaking, these techniques are based on computing a
rolling minimum of the last k observed latencies. Using this
approach, we were unable to achieve a 0% rate of false positive, i.e.,
avoiding non-existing path changes. The minimum false positive
rate that we achieved was 7.69% with a rolling window of k = 20.
Therefore, we enhanced the rolling minimum technique as we
will explain later in this section. It is also worth noting that using
traceroutes to detect paths [3] requires cooperation of the cloud
provider and can fail to correctly detect paths when routers do not
respond with ICMP errors.

We first present our technique to extract base propagation
latencies from awsmeasurements while removing congestion. Then
we validate the accuracy of this technique to detect TE activity (i.e.,
path changes). We want to stress that we do not claim our technique
is general but rather we tailored our path change detection to the
aws network and its observable congestion profile. We further
discuss this aspect in Section 6.

Our approach to detect path changes. We use a conservative
approach that computes the “mode” in a sliding window (see Fig. 2
for an example). For each flow, we first aggregate the measured
latencies (top-left part of the figure) across 1 second intervals by
computing the minimum latencies across 5 probes1. We then apply
our sliding window mode-based function using a window size of
4 seconds. While sliding our window we maintain an estimate of
the current base propagation latency. If 3 out of 4 observations in a
window are within 0.5ms of the minimum value in the window, we
say that the minimum is stable. Two cases are possible: (a) a window
has a stable minimum or (b) not. In case (a), i.e., the minimum is
stable, if the minimum is also within ± 0.5ms from the currently
estimated base propagation latency, we assume that the estimated
base propagation latency is stable and do not modify it. Otherwise

1Probes are sent at 200 ms intervals

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

(i.e., the new minimum is not within ± 0.5ms from the estimated
propagation latency), we update the propagation latency to the
new minimum. In case (b), i.e., the minimum is unstable, hence we
ignore the value and keep the estimated base propagation latency
unchanged.

In Fig. 2, the minimum of 7.9 ms in window wn is stable since
at least 3 latency samples in the window are within 7.9 ± 0.5 ms.
Therefore, we update the estimated propagation latency with this
stable minimum. Window wn+1 is stable and the minimum of
8.2 is within 7.9 ± 0.5 ms. Therefore, we do not update the base
propagation estimate. Both windowswn+2 andwn+3 are unstable
because of the three samples 6.8, 8.2, and 9.8ms. For this reason,
we keep the previously computed base propagation latency as our
estimate. Windowwn+4 is stable and the minimum of 6.8 ms is not
within 7.9± 0.5 ms; therefore, we update the new base propagation
latency with this new value.

8.00
7.95
7.90

8.2 9.8 6.88.38.27.9

Transient spike ≥ 0.5 ms
(unstable)

Sliding window
(running minimum)

1-sec bin
latency

Base
propagation

wn+1wn wn+2

N/A N/AN/A 7.9

7

wn+4

7.9

Ignore output from unstable windows wn+2 and wn+3
Replace missing output with last valid propagation delay

Small variation < 0.5 ms
(stable)

1 sec

7.1

7.9 7.9 6.8

wn+3

la
te

nc
y

(m
s)

time (s)

Figure 2: An overview of path detection using a mode-based
sliding window that computes a running minimum. We
depict an example where transient spikes (≥ 0.5 ms) are
filtered out, whereas actual base propagation changes (with
stable latencies) are eventually detected.

To further remove congestion noise, we cluster our latency
classes into 1-millisecond bins, by rounding to the nearest
millisecond. We then compute the churn — or number of flows
admitted — to all observed clusters. If a cluster has less than 0.1%
of the sum of all cluster admissions, we conservatively consider
it as congestion noise and remove it from our measurements. We
presume that, in these cases, such events are likely to occur if there
is persistent congestion — with minimal latency oscillations which
can result in false positives. As such, given that Amazon offers
99.9% availability for most of their inter-region services, we opt to
remove clusters receiving less than 0.1% activity. We refer to the
sequential execution of the mode sliding window followed by the
above filtering technique as the path change detector.

Note that if a flow is moved to a path with the same latency, we
are unable to detect this change, thus our conservative approach has
false negatives. In the next subsection, we show that our approach
can accurately distinguish path changes from congestion events
in the aws network. This eliminates false positives in path change
detection.

3.2 Accuracy of path change detector
To verify that the latency changes observed by our measurements
(e.g., Fig. 1) are due to routing changes in the network (and
not caused by our measurement technique, congestion, cloud
interference, etc.), we performed three sets of experiments: (i) we
measured RTTs among VMs within one availability zone between
two different DCs, (ii) identified and correlated packet reordering
across the aws WAN with the changes in the extracted base
propagation latencies from RTT measurements, and (iii) identified
and correlated changes in network paths using traceroute with
measured OWD. Additionally, we discussed our findings with cloud
networking experts, who had read an early draft of our paper, and
they supported these findings.

Latency measurements within the same region. First, we
measured network RTT between different VMs located in the same
region but in different availability zones. Our results show that
intra-region latencies are stable and do not experience changes
such as those seen in Fig. 1. We conclude that latency fluctuations
are caused by traversing the inter-region cloud backbone network.2

Packet reordering correlation. Next, we deployed a pair of
c5.large VMs in the Oregon and Virginia aws regions. Using
our custom traffic generator (deployed in Oregon and Virginia) we
measured RTT by sending UDP packets every 0.5 ms continuously
for 2 hours. Each packet had a unique ID and a monotonically
increasing sequence number. We note that no packet was dropped
during the experiment. By identifying inconsistencies in the
sequence numbers at the receiver, we could detect when packets
arrived out of order. Next, we correlated the instances of out-of-
order arrivals with the observed RTT between VMs in Oregon and
Virginia. The top graph in Fig. 3 shows a 2-hour snapshot of RTTs
between Oregon and Virginia. The red vertical lines indicate when a
sequence of packets arrived out of order. Note that such reordering
events are strongly correlated with decreases in measured RTT. In
some cases, possibly due to asynchronous network updates, we
observe that the base propagation latency may quickly oscillate
between two values before stabilizing to one of them. These events
may mistakenly give the impression that, in Fig. 3, we observed
packet reordering events when the base latency increased, as the
path latency decreases are indistinguishable.

As discussed in Section 2, when a network flow ismoved (e.g., due
to TE) to a path with lower latency, subsequent packets can overtake
the in-flight packets on the higher latency paths; thus, they arrive
out of order. In contrast, moving to a path with a higher latency does
not affect the order of packet arrivals. Therefore, packet reordering
events can only be used to detect path changes to lower latency
paths. Furthermore, routing changes that cause RTT decreases of
less than 0.5 ms (e.g., at 14:00 on the x-axis) may not be detected by
our measurement as packet probes are transmitted exactly every
0.5 ms. We recall that since we do not observe any packet drops,
packet reordering can only occur due to path changes or some
specific switch’s packet schedulers; hence, they are not due to
congestion in the network. By observing a high correlation between
packet reordering events and latency decreases, we exclude those
reordering events due to specific packet schedulers at the switches.
2For brevity, we do not show these results, but all samples can be found in [1].

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

Increasing the frequency of probe generation could increase the
sensitivity of our measurement.

To evaluate whether our path change detector detects all the path
changes associated with packet reordering (and thus changes to
lower latency paths), we fed as input the packet trace measurements
to our path change detector and plotted the output in the bottom
subplot of Fig. 3.We plotted a dotted red line when our path detector
detects a negative/positive latency path change. We observe that
our path detector accurately detect the vast majority of the negative
latency path changes corresponding to packet reordering events
(some of them may not be detected due to noise in the latency
signal). More importantly, out path change detector never reports
a non-existing latency-decrease path change, thus achieving zero
false positive rate. We note that the packet reordering correlation
cannot be used to verify the accuracy of latency-increase path
change detection.

74
75

76
77

78
79

80

13:30 14:00 14:30

R
TT

 (m
s)

Time [Hr:Min]

Raw Latency Packet reordering

74
76

78
80

Filtered Latency Step change

13:30 14:00 14:30

R
TT

 (m
s)

Time [Hr:Min]

Figure 3: Measuring path detection accuracy using
reordering events. The top plot shows observed RTTs
and packet reordering occurrences whereas the bottom
plot shows the filtered RTTs computed via our path change
detector as well as the detected path change events.

Traceroute correlation. Finally, we identified and correlate
changes in network paths (using traceroute) for a sample TCP flow
between VMs in Oregon and Virginia with the measured OWD.

We established a TCP flow between these two regions and sent
ping probes at a rate of 5 per second to measure RTT and OWD. In
parallel, we ran traceroute measurements that were obtained using
our custom traceroute (based on the principles described in [3]).
The traceroute crafted network packets that matched the 5 tuples

of the sample TCP flow to guarantee that both packets from the
traceroute and the TCP flow would follow the same network path.3

We ran traceroute every 20 seconds and recorded the observed
network paths. By analyzing the sequence of measured paths we
identified the moments when changes in routing happened. These
events were correlated with the OWD latency measured using TCP
flows. Fig. 4 shows the OWD network latency with routing changes
shown as vertical red lines. This figure illustrates that every change
in OWD is accompanied by a change in the forward network path
(unless the duration of such a change was less than 20 seconds as
the traceroute would miss such event). Note that the opposite is
not always true; as two distinct network paths may have nearly
identical network latency, thus resulting in no network latency
change.

Aswith packet reordering, we show in Fig. 4 that our path change
detector identifies all the traceroute path change events that incur
a latency change of at least 0.5 ms.

80
90

10
0

11
0

11:00 11:30 12:00

R
TT

 (m
s)

Time [Hr:Min]

Raw Latency Network Path Change

80
90

10
0

11
0

Filtered Latency Step change

11:00 11:30 12:00

R
TT

 (m
s)

Time [Hr:Min]

Figure 4: Measuring path detection accuracy using inflow
traceroutes. Top plot shows path changes captured via
traceroutes and bottom plot shows same output as Fig. 3.

3.3 Measurements description
We have so far established that it is feasible to rely on changes in
the base propagation latency to accurately detect path changes in
the aws network. We now discuss in detail the set of long-term
measurements performed to answer the measurements goals stated
at the beginning of this section.
3This is the only experiment where we assume the presence of per-flow load balancing
in the network.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

Our measurements can be broken into two sets: (i) Macro-scale
measurements that collect all the observable base propagation
latencies between 120 unique Amazon aws region pairs and (ii)
Micro-scale measurements that are used for analyzing in deeper
detail the performance of the individual flows (e.g., number of path
changes experienced) and compare among flows (e.g., to examine
fairness) during the complete duration of the measurement. In
the first set of measurements, for each pair of regions, we select
two machines in two different regions and create a large number
of flows using many different source ports. We randomly pick
a set of 512 ports every 30 seconds. The goal is to compute the
maximum difference between observed base propagation latencies
among all the DC pairs. The second set of measurements targets
a limited number of selected region pairs, but generates a greater
number of probes per second in order to detect latency changes
at a fine-grained temporal resolution. To gather per-flow statistics,
we randomly select 512 ports and keep them unchanged for the
entire duration of the measurement. We describe the specifics of
our experimental configurations below and summarize them in
Table 1.

Table 1: Testbed configuration for measurements.

Config. Macro-scale Micro-scale
of DC Pairs 120 4
of Flows 512 512
Probing Rate 10 probes every 30s 5 probes/s
Flow Generation Dynamic (every 30s) Static
Duration 2 days 1 week
Ping Mechanism Raw Sockets TCP Ping
Results Fig. 5 all except Fig. 5 & 15

Testbed. We use two distinct setups to conduct our macro and
micro-scale measurements on aws. Our macro-scale testbed probes
paths between 16 regions located in 16 different Amazon aws
regions. We create c5.large EC2 instances in each region and
connect them all-to-all, for a total of 120 unique region pairs. In
contrast, our micro-scale measurements are deployed in a more
limited setting and focus on only 4 region pairs.

Probing. In our macro-scale experiments, we use raw sockets
to perform an exhaustive search of base propagation latencies by
emulating TCP connections. This allows us to efficiently probe
paths by creating custom TCP packets with different source ports
without being bound by the maximum number of TCP connections
that can be created on a given VM instance. We perform a search
by picking 512 random ports every 30 seconds. For our micro-scale
measurements, we focus on only four region pairs — selected among
the top 10% pairs in terms of greatest differences in the previously
observed propagation latencies — and no longer emulate TCP
connections, but instead rely on hash-consistent TCP ping, where
we maintain 512 static TCP connections between each regions pair.
We verified that our probes are never retransmitted twice during
our measurements, e.g., due to packet drops.

4 ANALYSIS OF THE RESULTS
We showed in Section 3 that we can use our path change detector
to extract the base propagation latency of the path through which a
flow in being routed as well as detect when the flow is rerouted over
a different path. We refer to flow latency as the base propagation
latency of the path through which the flow is being routed. We
say that a flow changed path if the flow latency changes by at least
±0.5 ms, as described and validated in Section 3.

In this section, we evaluate the frequency and magnitude of
the flow latency changes observed between aws regions using
the measurements obtained from both the macro- and micro-scale
experiments described in Section 3. These results shed light on the
extent to which TE operation is performed within the aws cloud
backbone network and the assumptions that can be made by cloud
application developers. Our main findings can be summarized as
follows: (i) between two machines there may exist many different
path with diverse latencies (Section 4.1), (ii) some paths may
suddenly become unavailable (Section 4.2), (iii) half of the observed
paths persist for 10 seconds or less (Section 4.3), (iv) the lowest
latency paths have the highest flow churn (Section 4.3), and (v)
some flowsmay consistently experienceworse propagation latencies
than others (Section 4.4). Results (ii-v) are based on the micro-
experiments, while result (i) is based on the macro-experiment.

4.1 Flow latencies vary greatly across regions
To understand the spectrum of possible base propagation path
latencies experienced by a flow, we first measure the highest (max)
and lowest (min) flow latency for each of the unique region pairs
as described in the macro-scale paragraph in Section 3. Fig. 5(a)
shows a CDF of the distribution ofmax −min latency differences
across all DC pairs. We see that the median of these differences is
at 10 ms, but can increase to roughly 35 ms at the 95th percentile.

While these differences appear to be non-negligible, it is hard
to reason about their significance in isolation since the minimum
inter-region latencies can be 10s to 100s of milliseconds. In order to
put these numbers into perspective, Fig. 5 (b) shows a CDF of the
relative max

min flow latency percentages; where the latency change is
computed as the percentage increase from the lowest (min) to the
highest (max) flow latency observed for each region pair. We can
clearly see a heavy-tailed distribution, with changes of up to 32%
at the 95th percentile. When such large jumps in latency occur this
can negatively affect services that require consistent inter-region
request-response latencies.

4.2 Availability of paths
While it is clear that the maximum latency change can be quite
profound, this value is computed based on the best and worst
flow latencies observed during a period of 2 days. However, it
is not immediately clear whether these latency classes are available
universally or only during certain time periods. To evaluate this, we
took a closer look at four region pairs, namely: “Oregon-Virginia”,
“Sydney-Tokyo”, “São Paulo-Montreal”, and “Singapore-Paris”. We
chose these pairs to represent different continent combinations
(with the exception of “Oregon-Virginia”, where both are in the
US) from the top 50th percentile of regions pairs that showed the
largest absolute latency differences. We plot the latency differences

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

for these regions pairs in Fig. 6 where “Oregon-Virginia” has the
highest percentage change at 40% and “Sydney-Tokyo” being the
lowest at roughly 10%.

0

0.2

0.4

0.6

0.8

1.0

0 20 40 60

95th percentile = 35.28 ms

80

Fr
ac

tio
n

of
 re

gi
on

s

(a) Latency difference (ms)

0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120

95th percentile = 32.63 ms

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Fr
ac

tio
n

of
 re

gi
on

s

(b) Relative latency change (%)

Figure 5: CDF of the (a) absolute differences (max −min) and
(b) relative percentages

(max
min

)
flow latencies across all the

aws region pairs.

La
te

nc
y

(m
s)

0
5

10
15

20

MTRL_SPLO PRIS_SNGP SDNY_TKYO VGNI_ORGN

0
20

40
60

80
10

0

Pe
rc

en
ta

ge
 c

ha
ng

e
(%

)

Latency difference (max−min) % Latency change (diff/min)

Figure 6: Absolute and relative latency changes for four
different Amazon aws DC pairs.

To show the availability of paths across time, in Fig. 7 we plot
the flow latency percentiles of 512 flows observed for each region
pair over time. The blue area corresponds to the inter-quartile, the
bottom (upper) dark gray area corresponds to the 5th to 25th and
the 75’th to 95th interpercentile range, and the bottom (upper)
light gray area corresponds to the 0th to 5’th and the 95th to
100th interpercentile range. The plotted latencies are the average
base propagation latencies obtained from the path change detector
(fed with the raw measurements) binned in 1 hour intervals, and
thus do not include congestion-induced spikes. We can clearly

see in all subfigures (with the exception of (a)) that the latencies
experienced by the flows can change dramatically with time. The
inter-quartile ranges (highlighted in blue) can shift sporadically
over time, indicating that certain paths become less prevalent or
harder to reach (e.g., due to increased load or failures). Moreover,
looking at the minimum observed latency we observe that lowest-
latency paths become unavailable over time. For instance, in Fig. 7
(c), we saw on Day 3 a new low latency path that lasts for only a few
hours and then disappears for the rest of the week. This could be
caused by TE operations that reallocate the paths across different
region pairs or perhaps because of different types of customers.

Summary. Flow latencies between a single region pair can change
dramatically (by up to 32% at the 95th percentile). Moreover, some
latency classes are unavailable during specific hours of the day,
suggesting that specific paths become unavailable.

4.3 Flow latency persistence
In the previous section, we explored differences between flow
latencies and how flows are distributed across paths varies over
time. However, it is desirable to know how often these flow latencies
change. In fact, frequent routing changes can be a problem both for
cloud network operators as well as for a cloud’s customers since
frequent changes can have a negative impact on TCP flows due to
packet re-ordering and inaccurate RTT estimation [35].4

We study these changes by first looking into how long a flow
persists in a latency class. Fig. 8(a) shows a CDF of flow latency
durations for all flows for each region-pair. The y-axis represents
the fraction of events in which a flow moved to a new path and
persisted on that path for less than x seconds before being rerouted
to a different path. Surprisingly, from this plot we find that in
“São Paulo-Montreal” roughly 40% of flows moving to a new path
continue to use this path less than 10 seconds before moving to
another path. This can lead to packet re-ordering for flows longer
than 10 seconds—which, to put into context, is more than 75% of the
inter-region flows in Facebook’s caching clusters [34]. In contrast,
for “Sydney-Tokyo” flows change their paths rather infrequently
and 50% of those flows moving to a new path continue to use
that path for more than 280 seconds. As previously seen in Fig. 7,
this region-pair rarely exhibits any changes across its flow latency
distributions, suggesting that its paths are unlikely to be subject to
frequent TE changes. In Fig. 9, we break down the flow persistence
graph into the forward and reverse paths.

Secondly, we examine whether flows change their paths in
tandem, i.e., whether flows move to different paths at the same
time. Fig. 8(b) plots the number of flows (out of 512) that changed
their path at least once during a 20-second interval. The y-axis
presents the fraction of 20 second time interval bins within
which at most x flows change their path in a single bin. We
find that, “Singapore-Paris” and “São Paulo-Montreal” exhibit an
all-or-nothing property where either the majority of flows are
affected or none of them are affected. This indicates that TE events,
when triggered, can dramatically impact a large population of
flows, perhaps due to failures in the network, planned topology

4Evaluating the impact of latency instability on different congestion control
mechanisms is outside the scope of this paper.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

10
5

11
2

11
9

La
te

nc
y

(m
s)

Tues Wed Thurs Fri Sat Sun Mon

(a) Sydney-Tokyo

15
1

16
2

17
3

Tues Wed Thurs Fri Sat Sun Mon

La
te

nc
y

(m
s)

(b) Singapore-Paris

La
te

nc
y

(m
s)

67
75

84

Tues Wed Thurs Fri Sat Sun Mon

(c) Oregon-Virginia

12
1

12
4

12
8

Tues Wed Thurs Fri Sat Sun Mon

La
te

nc
y

(m
s)

(d) São Paulo-Montreal

Figure 7: Changes in the distribution of latencies across 512 different flows binned in 1 hour intervals.

(a) Flow persistence (s) (b) # of flows changing paths (c) Flow path change interarrival time (s)

Figure 8: CDFs showing characteristics of traffic class changes across all the monitored flows. Subfigure (a) shows every path
change event of a flow, (b) shows the # of flows that experienced at least 1 path change in each 20 second time interval bin,
and (c) shows the interarrival time between any two path change events observed in the network. Legend: São Paulo-Montreal

; Paris-Singapore ; Sydney-Tokyo ; and Oregon-Virginia .

augmentation, an unwanted cascading effect — where changes in
the traffic matrix caused by the initial TE events trigger successive
waves of routing changes — or even asynchronous network updates.
In contrast, “Oregon-Virginia” (“Sydney-Tokyo”) exhibits many
small TE operations during (50% of) all the 20-second intervals.
To further investigate these cases, Fig. 8(c) shows the inter-arrival
time between flow path changes. In this figure, the y-axis shows
the fraction of path changes events across all flows such that the
time between that path change event and the next path change
event (possibly of a different flow) is x . Similar to the previous plot,
“Oregon-Virginia” also demonstrates unique characteristics. On
average, its flows change paths more frequently — with interarrival
times of inter-flow path changes of less than 5 seconds at themedian.
Moreover, this rate of changes can increase leading to many path
changes in 150 ms. This may suggest different subclasses of TE
events — with major events (likely in response to significant traffic
changes) occurring less frequently but affecting more flows. Minor
TE events might be triggered in reaction to smaller congestion
events and consequently only need to reroute a small subset of the
flows (e.g., by slightly modifying traffic splitting ratios).

Different TE mechanisms impact flow persistence. Based on
discussions with cloud networking experts, we decided to verify
how the persistence of the flows would vary during different times
of the year. We measured the aws network for several weeks,
starting from December 2018 until the end of February 2019, for
the critical pair of Oregon and Virginia regions. We observed a
significant change during the month of February. Conversations
with cloud networking experts suggested that this could have been
due to a change of the aws configuration to a less reactive TE after

the high-load period of the Christmas holidays and January. We
plot the CDF of the flow persistence (similarly to Fig. 8 (a)) in Fig. 10
for two distinct weeks of February when we observed the change.
While the median flow persistence clearly decreased by roughly a
factor of 1.5, one still observes a very low path persistence for ∼30%
of the flow path change events. However, a thorough investigation
of these results is outside the scope of this paper.

Are flow latencies correlated with flow churn? While flows
can change paths quite frequently (in the order of seconds), we
have not yet studied the frequency of path changes of a flow with
respect to its flow latency. Specifically, do flows on low latency paths
experience higher flow churn, i.e., the number of flow rerouting
events on a specific path. To investigate this we group paths by
rounding the path latency and call the rounded latency a latency
class. We choose the relatively stable region pair of São Paulo-
Montreal to see how flows compete for paths in steady state.
We show in Fig. 11 a CDF (blue dotted line) of the flow churn
of each latency class. The x-axis shows all the observed latency
classes, ordered from left to right by increasing number of flow
churns. The corresponding latency of each latency class is shown
by the red solid line. We can clearly observe a negative correlation,
where paths belonging to low latency classes exhibit higher flow
churn (with only a few outliers). We reason that this could occur
due to flows being opportunistically routed to low latency paths
(provided they are available) with the possibility of subsequently
being preempted by higher priority flows. Therefore, given the
increased competitiveness for low latency paths, flows experience
more churn on such paths, while the reverse is true for higher
latency paths. This type of greedy shortest-path TE mechanisms

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

(a) Forward flow persistence (s)

(b) Reverse flow persistence (s)

Figure 9: CDFs showing asymmetry of flow latency class
persistence across all 512 monitored flows. Subfigures (a) &
(b) report results for the latency classes on the forward and
reverse paths, respectively.

Figure 10: CDF of class durations before and after a TEpolicy
change by Amazon.

have been widely used in MPLS-TE [29, 32] and B4 [22] networks.
Our results suggest that the Amazon aws network uses similar TE
mechanisms, although we did not get confirmation of this from the
aws team.

0.0 0.2 0.4 0.6 0.8 1.0

0
20

40
60

N
um

be
r o

f a
dm

itt
ed

 fl
ow

s
(x

10
00

)

12
2

12
4

12
6

12
8

13
0

Cumulative fraction of latency classes

La
te

nc
y

(m
s)

Churn Latency Class

Figure 11: Flow churn observed for latency classes found on
São Paulo-Montreal. The blue dotted line is a CDF of the
number of admitted flows reported by each latency class.
The red line is the latency of the associated class.

Summary. We have shown that flows change their latency classes
frequently and more than 50% of the flows moving to a new
path change paths within 10 seconds. We have also established
that these changes often happen in tandem in certain region
pairs. We presented our results to cloud networking experts and
they confirmed that low-latency paths tend to experiences higher
flow churn, suggesting TE tends to reactively move flows to
low latency paths whenever capacity is available. However, as
noted earlier these frequent path changes can negatively impact
TCP’s congestion control algorithm and ultimately negatively affect
tenant applications.

4.4 Flow latency fairness
The previous sections highlighted issues due to short persistence of
flows on paths. However, one might assume that frequent latency
class changes means that flows are unlikely to have unfavorable
path assignments for prolonged durations. Unfortunately, our
results show that this is not the case.

Fig. 12 shows a CDF of the median, 95th, and 99th percentile base
propagation latencies of all the flows over a one week timespan. We
see that these plots resemble a step function, but with significant
differences among flows. For instance, in Fig. 12(d), the median
latency changes from 105 to 118 ms — a 12% increase. The same
applies for the higher percentiles as well.

To further study unfairness, we also look at path changes. Fig.
13 shows a CDF of the total number of path changes (over the same
one week interval) experienced by different flows. Similarly, we
see that certain flows are more likely to exhibit more frequent path
changes, thus further exacerbating the level of unfairness among
flows.

Summary. These results indicate that despite frequent path
changes, flows are treated unfairly, with some persistently
experiencing poor performance. One reason for this unfairness
may lie in the specific implementation of weighted traffic-splitting
mechanisms. For instance, implementations based on tables and
buckets [39]may tend to rarelymove some of the flows, thus leaving
them in a poor latency class for a prolonged time.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

106 108 110 112 114 116 118
Latency (ms)

Fr
ac

tio
n

of
 fl

ow
s

0.
0

0.
5

1.
0

Median 95%ile 99%ile

(a) Sydney-Tokyo

158 160 162 164 166 168 170 172
Latency (ms)

Fr
ac

tio
n

of
 fl

ow
s

0.
0

0.
5

1.
0

Median 95%ile 99%ile

(b) Singapore-Paris

76 77 78 79 80 81 82
Latency (ms)

Fr
ac

tio
n

of
 fl

ow
s

0.
0

0.
5

1.
0

Median 95%ile 99%ile

(c) Oregon-Virginia

122 123 124 125
Latency (ms)

Fr
ac

tio
n

of
 fl

ow
s

0.
0

0.
5

1.
0

Median 95%ile 99%ile

(d) São Paulo-Montreal

Figure 12: Distribution of flow latency percentiles on
512 monitored flows. Flow latencies can differ, even over
two days. This indicates that some flows are consistently
unfairly penalized despite frequent path changes.

0 500 1000 1500 2000 2500 3000 3500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

of path changes

Fr
ac

tio
n

of
 fl

ow
s

MTRL_SPLO PRIS_SNGP SDNY_TKYO VGNI_ORGN

Figure 13: CDF of path changes experienced by different
flows.

Figure 14: Flow latency persistence expressed in terms of a
given “spike” threshold.

4.5 Impact on application performance
We also conducted application benchmarks between instances
deployed in Oregon and Virginia. Before discussing these results,
it is relevant to look into path change frequency for a given
latency change threshold, which we refer to as spike, since some
applications may not be affected by smaller latency spikes (i.e. < 1
ms). Fig. 14 shows a CDF of the latency persistence for spikes of at
least 1 ms, 2 ms, and 5 ms for pings between Oregon and Virginia.
We can see that the median flow persistence at 1 ms is ~170 seconds,
and this increases up to ~300 seconds at a 5 ms spike threshold.
This shows that flows running for more than a few minutes can
experience up to 5ms spikes — almost a 10% latency increase. Spikes
less than 5 ms occur infrequently and are not shown in this graph.

For our application benchmarks, we used the rsync utility —
which is popularly used for mirroring and performing incremental
snapshots across storage nodes. We configured our benchmark
to transfer 100K files between instances running in both regions,
with each file having a constant size of 1 KB. For each rsync run,
we use two distinct strategies to choose the source port for the
rsync connection: (a) Random: This is the default strategy, where
the source port is picked by the OS from the ephemeral range of
available ports. (b)MinimumRTT : This strategy probes 128 different
TCP ports for 10 seconds prior to each rsync run. The port with the
lowest average RTT is chosen and a NAT rule is inserted to force
the next rsync call to utilize the selected port. We repeated these
experiments 500 times and collected the runtimes of rsync calls. Fig.
15 shows a CDF of the rsync runtimes for both configurations.
We can see that, even when applying a simple minimum RTT
strategy for preferential port selection, we observe a ∼7% reduction
at the median. In addition, the resulting rsync performance is more
predictable — notably, the 99th percentile for Min. RTT is lower
than the median for Random and the standard deviation drops by a
factor of 2.8x, i.e., from 259 ms to 90 ms. By analyzing TCP dumps of
this traffic, we observed that these differences are mainly due to the
RTT of the assigned path — which directly impacts the throughput
of TCP. We also note that this is not an artifact of TCP slow start,
since rsync maintains the same TCP connection across an entire
run (spanning 100K files). The impact on shorter flows should be
even more noticeable and we leave this for future work.

Cloud provider tenants can arguably use similar strategies to
reduce latency for their geo-distributed applications. However,
this could increase unfairness, as tenants that do not utilize this
information would be prone to using unfavorable path assignments.
Moreover, this behavior might be at odds with the TE of the
cloud provider — which could be trying to move flows away from
congested paths. This raises the important question as to whether
cloud providers should make path allocations more transparent
and/or allow tenants to control such allocations (perhaps for a price).
A game theoretic analysis could aid in answering such questions
and we leave this investigation as future work.

Summary. Application performance can be hampered by
unfavorable path assignments. Tenants might be incentivized to
actively pick ports with the lowest observed latencies in order to
achieve better performance. However, this could also exacerbate
unfairness among tenants and work antagonistically with the cloud
provider’s TE policies.

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rsync runtime (ms)

Fr
ac

tio
n

of
 ru

ns

0 5800 6000 6200 6400 6600 6800 7000 7200

random min. RTTPort selection

Figure 15: CDF of rsync runtimes for transferring 100K files
between Oregon and Virginia. Two different strategies for
port selection are shown.

5 RELATEDWORK
There has been a great amount of work concerning measurements
of Internet routes across a variety of performance dimensions. In
this section, we discuss only the most closely related work. Several
previous works investigated the impact of TE mechanisms on
flow performance [4, 12]. Some of these results showed how the
performance of a flow can be affected during reconvergence of
routing protocols in the wider Internet, possibly including paths
across different domains [31]. In contrast, our work focused on intra-
domain routing where the TE modification is controlled by a single
entity. Others have shown how MPLS-based TE can potentially
move flows of traffic to high-latency paths in response to routing
reoptimization computation [29]. This is to be expected as TE has to
move flows of traffic away from congested shortest paths. However,
the authors of this previous work do not discuss whether some
source ports experience much worse latencies (i.e., flow unfairness).
Additionally, we observed a much higher frequency of path changes
than expected, possibly due to SDN control of the network.

The techniques to identify base propagation latency are not novel
and the concept of identifying base propagation latency by tracking
a minimum latency sample has been previously used in [2, 10, 26].

Another large body of literature focuses on inferring the topology
of load-balanced networks. The Multipath Detection Algorithm [5]
together with Paris [3] and Tokyo [30] traceroutes improve upon
traditional traceroute by avoiding measurement anomalies due to
load balancing in the network. DTRACK [13] is a probing tool that
predicts routing changes and decides on the number of probes
necessary to identify a new network path. In contrast, our work
does not aim to inferring the network’s topology, rather our goal
is to observe the impact of TE on flow latency persistence and
unfairness across different source ports over time.

Using source port manipulation to send traffic via the highest-
performance paths has received some attention in the context of
datacenter networks [14] and MPTCP [19]. However, our work
differs in several ways. First, we do not claim any novelty in using
source ports to route traffic along different paths. Second, MPTCP
periodically opens connections on new source ports to discover
better paths. We believe MPTCP — and MultiPath protocols in

general, could use dynamic port search techniques to proactively
select the best performing source ports. Finally, these prior works
do not investigate the impact of TE on flow latency.

6 DISCUSSION

Comparisons with other Cloud Provider networks. This
paper does not aim to compare different cloud providers’ networks.
We merely highlight the presence and effects of very reactive TE
mechanisms in the largest cloud provider’s network. However, we
also ran packet reordering experiments on Google Cloud for its
corresponding Oregon-Virginia pair. Our results indicated fewer
path changes, only occurring on the order of tens of minutes,
leading us to believe that they utilize less reactive TE policies for
this particular pair. This is possibly due to over-provisioning and/or
more predictable traffic demands as most applications in the Google
network are controlled by Google and not tenants. We leave the
study of other cloud providers’ networks as future work.

Tuning the path change detector. We tuned our path change
detector specifically for the Amazon aws network by setting the
path change threshold to 0.5ms and validated this value with
additional measurements (see Section 3). We note that the path
detector must be carefully tuned and validated for each network,
using the techniques described in Section 3.2. We leave this task as
future work.

Impact of VM instances. One may wonder whether the latency
variations are due to delays in the aws VM instances. As mentioned
in Section 3.2, we performed latency measurements within the
same region and observed stable latencies. Furthermore, our packet
reordering measurements further confirmed the observed latency
decreases were due to path changes.

Impact of different packet types (e.g., TCP, UDP). Given the
inherent blackbox measurements of this paper, we asked ourselves
whether some of our traffic was affected by the fact that we used
carefully crafted TCP and UDP packets. We shared the results with
cloud networking experts and were able to corroborate that what
we observed was due to TE activity and not simply an artifact of
our probing technique.

Use of flowlet switching. We have conducted packet train
experiments that transmit UDP packets at up to 5000 packets per
second to see whether the aws network uses flowlet switching [36]
— a load balancing technique that aims to preserve flow path
assignments for larger batches of packets. Even at these higher
packet rates, we still observe packet reordering, which leads us to
believe that the network does not employ flowlet switching.

7 CONCLUSIONS
The growth of Internet applications with low-latency and high-
bandwidth requirements places tremendous challenges on network
operators. To investigate our observations of latency variations,
we performed a large-scale measurement of the Amazon aws
network and devised techniques to accurately detect path changes.
Our results unveiled some surprising results. TE mechanisms in
this network seem to operate around at approximately 10-second

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

intervals, well below previously reported time scales. Consequently,
flows of trafficmay be subject to frequent and sharp latency changes
as well as persistent unfair treatment. Flow latencies between a
single region pair can change dramatically (by up to 32% at the 95th
percentile) and expose traffic to greater unfairness across flows.
Finally, tenants have incentives to move their traffic to low-latency
paths as demonstrated in our rsync use case. We believe this paper
will spur discussions on the impact of high-frequency TE on the
design of congestion control mechanisms and cloud applications.

ACKNOWLEDGEMENTS
This work has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No. 770889). This
work was also funded by the Swedish Foundation for Strategic
Research (SSF).

REFERENCES
[1] All measurement data used in this paper can be found via this link, goo.gl/25BKte
[2] Arun, V., Balakrishnan, H.: Copa: Practical delay-based congestion control for

the internet. In: 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18). USENIX Association (2018)

[3] Augustin, B., Cuvellier, X., Orgogozo, B., Viger, F., Friedman, T., Latapy, M.,
Magnien, C., Teixeira, R.: Avoiding traceroute anomalies with paris traceroute.
In: Proceedings of the 6th ACM SIGCOMM conference on Internet measurement.
pp. 153–158. ACM (2006)

[4] Augustin, B., Friedman, T., Teixeira, R.: Measuring load-balanced paths in the
internet. In: Proceedings of the 7th ACM SIGCOMM conference on Internet
measurement. pp. 149–160. ACM (2007)

[5] Augustin, B., Friedman, T., Teixeira, R.: Multipath tracing with paris traceroute. In:
End-to-End Monitoring Techniques and Services, 2007. E2EMON’07. Workshop
on. pp. 1–8. IEEE (2007)

[6] AWS, A.: Setting the Time for Your Linux Instance, https://docs.aws.amazon.com/
AWSEC2/latest/UserGuide/set-time.html Accessed 2-Feb-2019

[7] Bing: Microsoft Bing, https://www.bing.com Accessed 1-Oct-2018
[8] Blanton, E., Allman, M.: On making TCP more robust to packet reordering. ACM

SIGCOMM Computer Communication Review 32(1), 20–30 (2002)
[9] Bogdanov, K., Peón-Quirós, M., Maguire Jr, G.Q., Kostić, D.: The nearest replica

can be farther than you think. In: Proceedings of the Sixth ACM Symposium on
Cloud Computing. pp. 16–29. ACM (2015)

[10] Bogdanov, K.L., Reda,W., Maguire Jr, G.Q., Kostić, D., Canini, M.: Fast and accurate
load balancing for geo-distributed storage systems. In: Proceedings of the ACM
Symposium on Cloud Computing. pp. 386–400. ACM (2018)

[11] Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S.: Ethane:
Taking control of the enterprise. In: Proceedings of the 2007 Conference
on Applications, Technologies, Architectures, and Protocols for Computer
Communications. pp. 1–12. SIGCOMM ’07, ACM, New York, NY, USA (2007).
https://doi.org/10.1145/1282380.1282382

[12] Cunha, Í., Teixeira, R., Diot, C.: Measuring and characterizing end-to-end route
dynamics in the presence of load balancing. In: PAM. vol. 11, pp. 235–244. Springer
(2011)

[13] Cunha, I., Teixeira, R., Veitch, D., Diot, C.: Predicting and tracking internet path
changes. ACM SIGCOMM Computer Communication Review 41(4), 122–133
(2011)

[14] Detal, G., Paasch, C., van der Linden, S., Mérindol, P., Avoine, G., Bonaventure,
O.: Revisiting flow-based load balancing: Stateless path selection in data center
networks. Computer Networks 57(5), 1204–1216 (2013)

[15] Dhody, D., Palle, U., Singh, R., Gandhi, R.: PCEP Extensions for MPLS-
TE LSP Automatic Bandwidth Adjustment with Stateful PCE. Internet
Drafts PCE Working Group (Nov 2018), https://tools.ietf.org/html/
draft-ietf-pce-stateful-pce-auto-bandwidth-08

[16] Fortz, B., Thorup, M.: Optimizing OSPF/IS-IS Weights in a Changing World. IEEE
Journal on Selected Areas in Communications 20(4), 756–767 (2002)

[17] Hamilton, J.: Aws re:invent 2016: Tuesday night live, https://www.youtube.com/
watch?v=AyOAjFNPAbA Accessed 17-Jun-2018

[18] Hedrick, C.L.: Routing Information Protocol. Internet Request for Comments
RFC 1058 (Historic) (Jun 1988). https://doi.org/10.17487/RFC1058, http://www.
rfc-editor.org/rfc/rfc1058.txt

[19] Hesmans, B., Detal, G., Barré, S., Bauduin, R., Bonaventure, O.: SMAPP:
Towards smart multipath TCP-enabled applications. In: Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies. pp. 28:1–28:7. CoNEXT ’15, ACM, New York, NY, USA (2015).
https://doi.org/10.1145/2716281.2836113

[20] Hong, C.Y., Kandula, S., Mahajan, R., Zhang, M., Gill, V., Nanduri, M., Wattenhofer,
R.: Achieving high utilization with software-driven wan. SIGCOMM Comput.
Commun. Rev. 43(4), 15–26 (Aug 2013). https://doi.org/10.1145/2534169.2486012

[21] Hopps, C.: Analysis of an Equal-Cost Multi-Path Algorithm. Internet
Request for Comments RFC 2992 (Informational) (Nov 2000).
https://doi.org/10.17487/RFC2992, http://www.rfc-editor.org/rfc/rfc2992.txt

[22] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J., Hölzle, U., Stuart, S., Vahdat, A.: B4:
Experience with a Globally-Deployed Software Defined WAN. In: SIGCOMM
(2013)

[23] Jalaparti, V., Bliznets, I., Kandula, S., Lucier, B., Menache, I.: Dynamic pricing and
traffic engineering for timely inter-datacenter transfers. In: Proceedings of the
2016 ACM SIGCOMM Conference. pp. 73–86 (2016)

[24] Laor, M., Gendel, L.: The effect of packet reordering in a backbone link on
application throughput. IEEE network 16(5), 28–36 (2002)

[25] Ludwig, R., Katz, R.H.: The Eifel algorithm: making TCP robust against spurious
retransmissions. ACM SIGCOMM Computer Communication Review 30(1), 30–
36 (2000)

[26] Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy,
A., Venkataramani, A.: iPlane: An Information Plane for Distributed Services.
In: Proceedings of the 7th symposium on Operating systems design and
implementation. pp. 367–380. USENIX Association (2006)

[27] Meyer, D.: AWS Remains Dominant Player in Growing Cloud
Market, SRG Reports, https://www.sdxcentral.com/articles/news/
aws-remains-dominant-player-in-growing-cloud-market-srg-reports/

[28] Moy, J.: OSPF Version 2. Internet Request for CommentsRFC 2328 (INTERNET
STANDARD) (Apr 1998), http://www.rfc-editor.org/rfc/rfc2328.txt, updated by
RFCs 5709, 6549, 6845, 6860, 7474

[29] Pathak, A., Zhang, M., Hu, Y.C., Mahajan, R., Maltz, D.A.: Latency inflation with
MPLS-based traffic engineering. In: IMC (2011)

[30] Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R.: From Paris to Tokyo: on the
suitability of ping to measure latency. In: IMC (2013)

[31] Pucha, H., Zhang, Y., Mao, Z.M., Hu, Y.C.: Understanding Network Delay Changes
Caused by Routing Events. ACM SIGMETRICS Performance Evaluation Review -
SIGMETRICS ’07 Conference Proceedings 35(1), 73–84 (2007)

[32] Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching
Architecture. Internet Request for Comments RFC 3031 (Standards Track)
(Jan 2001), http://www.rfc-editor.org/rfc/rfc3031.txt

[33] Roughgarden, T., Tardos, É.: How bad is selfish routing? Journal of the ACM
(JACM) 49(2), 236–259 (2002)

[34] Roy, A., Zeng, H., Bagga, J., Porter, G., Snoeren, A.C.: Inside the social network’s
(datacenter) network. In: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication. pp. 123–137 (2015)

[35] Takács, A., Császár, A., Bíró, J., Szabó, R., Henk, T.: Path integrity aware traffic
engineering [telecom traffic]. In: Global Telecommunications Conference, 2004.
GLOBECOM’04. IEEE. vol. 2, pp. 692–696. IEEE (2004)

[36] Vanini, E., Pan, R., Alizadeh, M., Taheri, P., Edsall, T.: Let it flow: Resilient
asymmetric load balancing with flowlet switching. In: 14th USENIX Symposium
on Networked Systems Design and Implementation NSDI’17). pp. 407–420 (2017)

[37] Venkataramani, V., Amsden, Z., Bronson, N., Cabrera III, G., Chakka, P., Dimov, P.,
Ding, H., Ferris, J., Giardullo, A., Hoon, J., et al.: TAO: How Facebook Serves the
Social Graph. In: Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data. pp. 791–792. ACM (2012)

[38] Zhang, M., Karp, B., Floyd, S., Peterson, L.: RR-TCP: a reordering-robust TCP
with DSACK. In: 11th IEEE International Conference on Network Protocols, 2003.
Proceedings. pp. 95–106. IEEE (2003)

[39] Zhiruo Cao, Zheng Wang, Zegura, E.: Performance of hashing-based schemes
for internet load balancing. In: Proceedings IEEE INFOCOM 2000. Conference
on Computer Communications. Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies. vol. 1, pp. 332–341 (March 2000).
https://doi.org/10.1109/INFCOM.2000.832203

ACM SIGCOMM Computer Communication Review Volume 50 Issue 2, April 2020

goo.gl/25BKte
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/set-time.html
https://www.bing.com
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-auto-bandwidth-08
https://tools.ietf.org/html/draft-ietf-pce-stateful-pce-auto-bandwidth-08
https://www.youtube.com/watch?v=AyOAjFNPAbA
https://www.youtube.com/watch?v=AyOAjFNPAbA
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc2992.txt
https://www.sdxcentral.com/articles/news/aws-remains-dominant-player-in-growing-cloud-market-srg-reports/
https://www.sdxcentral.com/articles/news/aws-remains-dominant-player-in-growing-cloud-market-srg-reports/
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc3031.txt

	Abstract
	1 Introduction
	2 Background
	3 Measurement Methodology
	3.1 Detecting TE activity
	3.2 Accuracy of path change detector
	3.3 Measurements description

	4 Analysis of the results
	4.1 Flow latencies vary greatly across regions
	4.2 Availability of paths
	4.3 Flow latency persistence
	4.4 Flow latency fairness
	4.5 Impact on application performance

	5 Related Work
	6 Discussion
	7 Conclusions
	References

