
Self-Organizing Subsets: From Each According to His Abilities,
To Each According to His Needs

Amin Vahdat, Jeff Chase, Rebecca Braynard,
Dejan Kostić, Patrick Reynolds, and Adolfo Rodriguez�

Department of Computer Science
Duke University

fvahdat,chase,rebecca,dkostic,reynolds,razorg@cs.duke.edu

Abstract

The key principles behind current peer-to-peer research
include fully distributing service functionality among all
nodes participating in the system and routing individual
requests based on a small amount of locally maintained
state. The goals extend much further than just improv-
ing raw system performance: such systems must survive
massive concurrent failures, denial of service attacks, etc.
These efforts are uncovering fundamental issues in the
design and deployment of distributed services. How-
ever, the work ignores a number of practical issues with
the deployment of general peer-to-peer systems, includ-
ing i) the overhead of maintaining consistency among
peers replicating mutable data and ii) the resource waste
incurred by the replication necessary to counteract the
loss in locality that results from random content distribu-
tion. This position paper argues that the key challenge in
peer-to-peer research is not to distribute service functions
among all participants, but rather to distribute functions
to meet target levels of availability, survivability, and per-
formance. In many cases, only a subset of participating
hosts should take on server roles. The benefit of peer-
to-peer architectures then comes from massive diversity
rather than massive decentralization: with high probabil-
ity, there is always some node available to provide the
required functionality should the need arise.

�This research is supported in part by the National Science
Foundation (EIA-9972879, ITR-0082912), Hewlett-Packard,
IBM, Intel, and Microsoft. Braynard and Reynolds are sup-
ported by an NSF graduate fellowships and Vahdat is also sup-
ported by an NSF CAREER award (CCR-9984328).

1 Introduction

Peer-to-peer principles are fundamental to the con-
cept of survivable, massive-scale Internet services
incorporating large numbers—potentially billions—
of heterogeneous hosts. Most recent peer-to-peer re-
search systems distribute service functions (such as
storage or indexing) evenly across all participating
nodes [3, 4, 5, 6, 7, 9, 10]. At a high level, many
of these efforts use a distributed hash table, with re-
gions of the table mapped to each participant. The
challenge then is to locate the remote host respon-
sible for a target region of the hash space in a scal-
able manner, while: i) adapting to changes in group
membership, ii) achieving locality with the under-
lying IP network, and iii) caching content and/or
request routing state so as to minimize the average
number of hops to satisfy a request.

These recent efforts constitute important basic re-
search in massively decentralized systems, and they
have produced elegant solutions to challenging and
interesting problems. However, these approaches
seek massive decentralization as an end in itself,
rather than as a means to the end of devising practi-
cal service architectures that are scalable, available,
and survivable. From a practical standpoint, they ad-
dress the wrong set of issues in peer-to-peer comput-
ing.

We suggest that distributing service functions
across a carefully selected subset of nodes will yield
better performance, availability, and scalability than
massively decentralized approaches. The true op-
portunity afforded by peer-to-peer systems is not
the ability to put everything everywhere. Rather, it



is the opportunity to put anything anywhere. Why
distribute an index across one million nodes when
a well-chosen subset of one thousand can provide
the resources to meet target levels of service perfor-
mance and availability?

Givenn participants in a peer-to-peer system, we
argue that the best approach is not to evenly spread
functionality across alln nodes, but rather to select a
minimal subset ofm nodes to host the service func-
tions. This choice should reflect service load, node
resources, predicted stability, and network charac-
teristics, as well as overall system performance and
availability targets. While it may turn out thatm =

n in some cases, we believe thatm � n in most
cases. Membership in the service subset and the
mapping of service functions must adapt automati-
cally to changes in load, participant set, node status,
and network conditions, all of which may be highly
dynamic. Thus we refer to this approach for peer-to-
peer systems asself-organizing subsets.

One goal of our work is to determine the appro-
priate subset,m, of replicas required to deliver tar-
get levels of application performance and availabil-
ity. The ratio of subset sizem to the total number of
nodesn can approximately be characterized by:

m

n
=

u

dE

whereu is the sum of all service resources consumed
by then total hosts,d is the sum of all service re-
sources provided by them hosts in the subset, and
E is the efficiency — the fraction of resources in
use when the system as a whole begins to become
overloaded. Efficiency is a function of the system’s
ability to properly assign functionality to an appro-
priate set of sites and of load balancing, better load
balancing results in values ofE approaching one [6].
In a few systems, such as SETI@home, all available
service resources will be used; thus,u approaches
d, and it makes sense form to equaln. However,
in most systems each node can provide far more re-
sources than it is likely to consume; thus,u � d,
and given reasonable efficiency,m� n.

Self-organizing subsets address key problems of
scale and adaptation that are inherent in the mas-
sively decentralized approach. For example, routing
state and hop count for request routing in existing

peer-to-peer systems typically grow withO(lgn) at
best. While this may qualify as “scalable,” it still im-
poses significant overhead even for systems of mod-
est size. Using only a subset of the available hosts
reduces this overhead. More importantly, massively
decentralized structures may be limited to services
with little or no mutable state (e.g., immutable file
sharing), since coordination of updates quickly be-
comes intractable. Our recent study of availabil-
ity [11] shows that services with mutable state may
suffer from too much replication: adding replicas
may compromise availability rather than improve it.
Random distribution of functionality among replicas
means that more replicas are required to deliver the
same level of performance and availability. Thus,
there is an interesting tension between the locality
and availability improvements on the one hand and
the degradation on the other that comes from repli-
cation of mutable data in peer to peer systems. A
primary goal of our work is to show theresource
wastethat comes from random distribution, i.e., the
inflation in the number of randomly placed repli-
cas required to deliver the same levels of perfor-
mance and availability as a smaller number of “well-
placed” replicas. Finally, massively decentralized
approaches are not sufficiently sensitive to the rapid
status changes of a large subset of the client popu-
lation. We propose to restrict service functions to
subsets of nodes with significantly better connectiv-
ity and availability than the median, leading to im-
proved stability of group membership.

Our approach adapts Marxist ideology—“from
each according to his abilities, to each according to
his needs”—to peer-to-peer systems. The first chal-
lenge is to gather information about theabilities of
the participants, e.g., network connectivity, available
storage and CPU power, and theneedsof the appli-
cation, e.g., demand levels, distribution of content
popularity, and network location. The second chal-
lenge is to apply this information to select a sub-
set of the participants to host service functions, and
a network overlay topology allowing them to coor-
dinate. Status monitoring and reconfiguration must
occur automatically and in a decentralized fashion.

Thus, we are guided by the following design
philosophies in building scalable, highly available
peer-to-peer systems:



� It is important to dynamically select subsets of
participants to host service functions in a de-
centralized manner. In the wide area, it is not
necessary to make optimal choices; rather, it is
sufficient to make good choices in a majority of
cases and to avoid poor decisions. For example,
current research efforts place functionality ran-
domly and use replication to probabilistically
deliver acceptable performance for individual
requests. Our approach is t place functionality
o deterministically and to replicate it as nec-
essary based on network and application char-
acteristics. This requires methods to evaluate
expected performance and availability of can-
didate configurations to determine if they meet
the targets.

� A key challenge to coordinating peer-to-peer
systems is collecting metadata about system
characteristics. Configuring a peer-to-peer sys-
tem requires tracking the available storage,
bandwidth, memory, stability (in terms of up-
time and availability), computational power,
and network location of a large number of
hosts. At first glance, maintaining global state
about potentially billions of hosts is intractable.
However, good (rather than optimal) choices
require only approximate information: aggres-
sive use of hierarchy and aggregation can limit
the amount of state that any node must main-
tain. Once a subset is selected, the system
must track only a small set of candidate “re-
placement” nodes to address failures or evolv-
ing system characteristics. Similarly, clients
maintain enough system metadata to choose
the replica likely to deliver the best quality of
service (where QoS is an application-specific
measure). Once again, the key is to make ap-
propriate request routing decisions almost all of
the time, without global state.

� Service availability is at least as important as
average-case performance. Thus, we are de-
signing and building algorithms to replicate
data and code in response to changing client
access patterns and desired levels of availabil-
ity. Some important questions include deter-
mining the level of replication and placement

of replicas needed to achieve a given minimum
level of availability as a function of workload
and failure characteristics. Once again, a key
idea is that a few well-placed replicas will de-
liver higher availability than a larger number of
randomly placed replicas because of the con-
trol overhead incurred by coordination among
replicas.

The rest of this position paper elaborates on some
of the challenges we see in fully distributing service
functionality among a large number of nodes and de-
scribes Opus, a framework we are using to explore
the structure and organization of peer-to-peer sys-
tems.

2 Challenges to Massive Decentral-
ization

In this section, we further elaborate on our view of
why fully distributing functionality among a large
number of Internet nodes is the wrong way to build
peer-to-peer systems. While a number of techniques
have been proposed to minimize per-node control
traffic and state requirements, it still remains true
that in a fully decentralized system with millions of
nodes, the characteristics of all million nodes have to
be maintained somewhere in the system. To pick one
example, each node in a million-node Pastry system
must track the characteristics of 75 (given the sug-
gested representative tuning parameters) individual
nodes [6], potentially randomly spread across the
Internet. We believe that by choosing an appropri-
ate subset of global hosts (m of n) to provide ap-
plication functionality and by leveraging hierarchy,
the vast majority of nodes will maintain state about
a constant (small) number of nearbyagents. Sets of
agents are aggregated to form hierarchies and in turn
maintain state about a subset of them nodes and per-
haps approximate information on the full set ofm
nodes1. Thus, to route a request to an appropriate
server, nodes forward requests to their agent, which
in turn determines the appropriate replica (member
of m) to send the request to. In summary, massive

1For simplicity, this discussion assumes a two-level hierar-
chy, which should be sufficient for most applications. Our ap-
proach extends directly to hierarchies of arbitrary depth.



decentralization requires each system node to main-
tain state aboutO(lgn) other global nodes. If suc-
cessful in carefully placing functionality at strategic
network points, the vast majority of nodes maintain
state about a constant and small number of peers
(one or more agents), and each agent maintains state
about a subset of them nodes providing application
functionality.

Another issue with massive decentralization is
dealing with dynamic group membership. Assum-
ing a heavy-tailed distribution for both host uptime
and session length, significant network overhead
may be required to address host entry or departure
of the large group of hosts that exhibit limited or
intermittent connectivity (some evidence for this is
presented in [8]). This is especially problematic if
O(lgn) other hosts must be contacted to properly in-
sert or remove a host. In our approach, we advocate
focusing on the subset of hosts (again,m of n) that
exhibit strong uptime and good connectivity— the
tail of the heavy-tailed distribution rather than the
head. In this way, we are able to focus our attention
on hosts that are likely to remain a part of the sys-
tem, rather than being in a constant state of instabil-
ity where connectivity isalwayschanging in some
region of the network. Of course, nodes will be
constantly entering and leaving in our proposed sys-
tem as well. However, entering nodes must contact
only a small constant number of nodes upon joining
(their agents) and can often leave silently (especially
if they never achieved the level of uptime or perfor-
mance to be considered for future promotion to an
agent or one of them nodes that deliver application-
level functionality).

Finally, a key approach to massive decentraliza-
tion is randomly distributing functionality among a
large set of nodes. The problem then becomes rout-
ing requests to appropriate hosts in a small num-
ber of steps (e.g.,O(lg n) hops). Because these
systems effectively build random application-layer
overlays, it can be difficult to match the topology of
the underlying IP network in routing requests. Thus,
replication and aggressive caching [3, 5, 7] must be
leveraged to achieve acceptable performance rela-
tive to routing in the underlying IP network. While
this approach results in small inflation in “network
stress” relative to IP, application-layer store and for-
ward delays can significantly impact end-to-end la-

tency (even when onlyO(lgn) such hops are taken).
While such inflation of latency is perhaps not no-
ticeable when performing a lookup to download a
multi-megabyte file, it can become the bottleneck
for a more general class of applications. With our
approach, requests can typically be routed in a small
and constant number of steps (depending on the cho-
sen depth of the hierarchy). Further, because we
have explicit control over connectivity, hierarchy,
and placement of functionality, we can ensure that
requests from end hosts are routed to a nearby agent,
which is in turn routed to an active replica. The ran-
dom distribution of functionality in massively de-
centralized systems makes it more difficult to im-
pose any meaningful hierarchy.

3 An Overlay Peer Utility Service

We are pursuing our agenda of dynamically placing
functionality at appropriate points in the network in
the context of Opus [1], an overlay peer utility ser-
vice. While our research is specific to this service,
we believe our techniques and approach are gen-
eral to a broad range of peer-to-peer services. As
a general compute utility, we envision Opus hosting
a large set of nodes across the Internet and dynami-
cally allocating them among competing applications
based on changing system characteristics. Individ-
ual applications specify their performance and avail-
ability requirements to Opus. Based on this informa-
tion, we map applications to individual nodes across
the wide area. The initial mapping of applications to
available resources is only a starting point. Based
on observed access patterns to individual applica-
tions, Opus dynamically reallocates global resources
to match application requirements. For example, if
many accesses are observed for an application in
a given network region, Opus may reallocate addi-
tional resources close to that location.

One key aspect of our work is the use of Ser-
vice Level Agreements (SLAs) to specify the amount
each application is willing to “pay” for a given level
of performance. In general, these SLAs provide
a continuous space over which per-service alloca-
tion decisions can be made, enabling prioritization
among competing applications for a given system
configuration. Based on an estimate of the marginal



utility of resources across a set of applications at
current levels of global demand, Opus makes allo-
cation and deallocation decisions based on the ex-
pected relative benefit of a set of target configura-
tions [2].

Many individual components of Opus require in-
formation on dynamically changing system charac-
teristics. Opus employs a globalservice overlayto
interconnect all available service nodes and to main-
tain soft state about the current mapping of utility
nodes to hosted applications (group membership).
The service overlay is key to many individual sys-
tem components, such as routing requests from indi-
vidual clients to appropriate replicas, and perform-
ing resource allocation among competing applica-
tions. Individual services running on Opus employ
per-application overlaysto disseminate their own
service data and metadata among individual replica
sites.

Clearly, a primary concern is ensuring the scal-
ability and reliability of the service overlay. In an
overlay with n nodes, maintaining global knowl-
edge requiresO(n2) network probing overhead and
O(n2) global storage requirements. Such overhead
quickly becomes intractable beyond a few dozen
nodes. Peer-to-peer systems can reduce this over-
head to approximatelyO(lgn) but are unable to pro-
vide any information about global system state, even
if approximate. Opus addresses scalability issues
through the aggressive use of hierarchy, aggrega-
tion, and approximation in creating and maintaining
scalable overlay structures. Opus then determines
the proper level of hierarchy and aggregation (along
with the corresponding degradation of resolution of
global system state) necessary to achieve the target
network overhead.

4 Conclusions

This paper argues that a principal challenge in peer-
to-peer systems is determining where to place func-
tionality in response to changing system character-
istics and as a function of application-specified tar-
gets for availability, survivability, and performance.
Many current peer-to-peer research efforts focus on
fully distributing service functionality across all (po-
tentially billions) participating hosts. The result-

ing research fundamentally contributes to our un-
derstanding of structuring distributed services for
availability, survivability, and scalability. A key
challenge in peer-to-peer research is to dynamically
determine the proper subsetm, of n participating
nodes, required to deliver target levels of availabil-
ity, survivability, and performance, where typically
m � n. For many application classes, especially
those involving mutable data, increasingm will not
necessarily improve performance and availability.
We are using Opus, an overlay peer utility service
that dynamically allocates resources among compet-
ing applications, as a testbed for experimenting with
the ideas presented in this paper.

References

[1] Rebecca Braynard, Dejan Kosti´c, Adolfo Ro-
driguez, Jeffrey Chase, and Amin Vahdat.
Opus: an Overlay Peer Utility Service. InPro-
ceedings of the 5th International Conference
on Open Architectures and Network Program-
ming (OPENARCH), June 2002.

[2] Jeffrey S. Chase, Darrell C. Anderson,
Prachi N. Thakar, Amin M. Vahdat, and
Ronald P. Doyle. Managing Energy and Server
Resources in Hosting Centers. InProceedings
of the 18th ACM Symposium on Operating Sys-
tem Principles (SOSP), October 2001.

[3] Frank Dabek, M. Frans Kaashoek, David
Karger, Robert Morris, and Ion Stoica. Wide-
area Cooperative Storage with CFS. InPro-
ceedings of the 18th ACM Symposium on Op-
erating Systems Principles (SOSP’01), Octo-
ber 2001.

[4] John Kubiatowicz, David Bindel, Yan Chen,
Patrick Eaton, Dennis Geels, Ramakrishna
Gummadi, Sean Rhea, Hakim Weatherspoon,
Westly Weimer, Christopher Wells, and Ben
Zhao. OceanStore: An Architecture for
Global-scale Persistent Storage. InProceed-
ings of ACM ASPLOS, November 2000.

[5] Sylvia Ratnasamy, Paul Francis Mark Handley,
Richard Karp, and Scott Shenker. A Content



Addressable Network. InProceedings of SIG-
COMM 2001, August 2001.

[6] Antony Rowstron and Peter Druschel. Pas-
try: Scalable, Distributed Object Location and
Routing for Large-scale Peer-to-Peer Systems.
In Middleware’2001, November 2001.

[7] Antony Rowstron and Peter Druschel. Storage
Management and Caching in PAST, a Large-
Scale, Persistent Peer-to-Peer Storage Utility.
In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP’01), Oc-
tober 2001.

[8] Stefan Saroiu, P. Krishna Gummadi, and
Steven D. Gribble. A Measurement Study of
Peer-to-Peer File Sharing Systems. InPro-
ceedings of Multimedia Computing and Net-
working 2002 (MMCN’02), January 2002.

[9] Ion Stoica, Robert Morris, David Karger, Frans
Kaashoek, and Hari Balakrishnan. Chord: A
Scalable Peer to Peer Lookup Service for In-
ternet Applications. InProceedings of the 2001
SIGCOMM, August 2001.

[10] Marc Waldman, Aviel D. Rubin, and Lor-
rie Faith Cranor. Publius: A Robust, Tamper-
evident, Censorship-resistant, Web Publishing
System. InProc. 9th USENIX Security Sympo-
sium, pages 59–72, August 2000.

[11] Haifeng Yu and Amin Vahdat. The Costs and
Limits of Availability for Replicated Services.
In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP), October
2001.


